

Which YARA Rules Rule:
Basic or Advanced?

GIAC (GCIA) Gold Certification and RES 5500

Author: Christopher S. Culling, csculling1@gmail.com

Advisor: Sally Vandeven

Accepted: July 29, 2018

Abstract

YARA rules, if used effectively, can be a powerful tool in the fight against malware.

However, it appears that the majority of individuals who use YARA write only the most

basic of rules, instead of taking advantage of YARA’s full functionality. Basic YARA

rules, which focus primarily on identifying malware signatures via detection of

predetermined strings within the target file, folder, or process, can be evaded as malware

variants are created. Advanced YARA rules, on the other hand, which often include

signatures as well, also focus on the malware’s behavior and characteristics, such as size

and file type. While it is not uncommon for strings within malware to change, it is much

rarer that its primary behavior will. After analyzing multiple samples of two different

malware strains within the same family, it became clear that using both basic and

advanced YARA rules is the most effective way for users and analysts to implement this

powerful tool. As there are a large number of advanced capabilities contained within

YARA, this paper will focus on easy-to-use, advanced features, including YARA's

Portable Execution (PE) module, to highlight some of the more powerful aspects of

YARA. While it takes more time and effort to learn and utilize advanced YARA rules, in

the long run, this method is a worthwhile investment towards a safer networking

environment.

Which YARA Rules Rule: Basic or Advanced?

2

Christopher S. Culling, csculling1@gmail.com

1. Introduction

YARA is a recursive acronym which, according to its founder, stands for either

Yet Another Recursive Acronym or Yet Another Ridiculous Acronym. It is a tool used to

identify and classify malware through the use of signature-based rules and other target

characteristics that users can run against files, folders, and processes. There are basic

YARA rules, such as searching for a particular text string within a file, and more

advanced YARA rules, such as searching for data at a specific virtual memory address in

a running process. YARA syntax closely resembles the C language (Alvarez, 2018).

1.1. Purpose

While it is possible to find articles and resources which explain basic or advanced

usages of YARA rules, one of the topics that was missing from the literature was a

comparative analysis of the basic and advanced YARA rules against each other. The

literature on YARA also does not address whether or not the extra time it takes to write

advanced rules will be more beneficial in the long run, compared to the efficiency of only

utilizing the basic, easier-to-write rules. To account for this gap, the focus of this research

will be on analyzing this comparison to determine which YARA rules rule - basic or

advanced.

The research question that this paper will ultimately attempt to answer is: When

attempting to identify malware, how much more effective, if at all, is the utilization of

more complex, advanced YARA rules than the use of easier-to-write, basic rules?

1.2. Significance

This research question is worth being answered because it appears, through both

discussions with those who write YARA rules, and reviews of rules posted on the

Internet, that most YARA users do not take advantage of its more advanced capabilities.

Instead, they mostly rely on YARA’s more basic features. According to Robert M. Lee,

CEO of Dragos, Inc., and SANS Certified Instructor, as a result of “what I’ve seen, folks

I’ve taught, and the YARA rules that get published by vendors […] not many researchers

take advantage of YARAs extendable nature” (R. Lee, personal correspondence, May 12,

Which YARA Rules Rule: Basic or Advanced?

3

Christopher S. Culling, csculling1@gmail.com

2017). Additionally, an anonymous YARA superuser provided several reasons to explain

why many YARA users only rely on its basic functions:

1. The basic usage of YARA is good enough.

2. Users don’t care about, or don’t understand, the concept of what I call resilient

rules. Writing rules looking for a combination of unique strings is good, but all it

takes is those unique strings to change and your rule is not going to catch the new

code. This is what I call a low-resilience rule. Instead, where it makes sense, I like

to write rules which are harder for an attacker to evade. This often relies upon the

more advanced features of YARA and is possibly more time consuming to write.

3. The "more advanced" features are newer, possibly buggier, and a little harder to

wrap your brain around. The YARA syntax around strings and how to use them in

conditions is easier for a non-programmer to understand.

4. YARA is only a small piece in the chain when it comes to defense. If you can

use a "less resilient" rule to catch a piece of malware and unravel the entire kill

chain from there, you can find more resilient ways to track the actor in the future

that doesn't rely solely upon unchanging malware.

5. Lastly, and this is just a counter-point to the arguments above, I find that if you

talk to people privately, they may have a better rule that they don't want to share

publicly. So, people do write really nice rules but are keeping them amongst

trusted peers because it is a more resilient rule (Anonymous, personal

correspondence, May 11, 2017).

Most of the existing literature on this topic does not explore the more advanced

aspects of YARA. This research will show that the utilizing both basic and advanced

YARA features results in better identification of malware. This research will propose that

more YARA users should take the time to learn about these advanced features and

incorporate them into their rules. Additionally, more documentation needs to be produced

by the YARA-using community that details use cases for advanced YARA rules and how

to use them more effectively.

Which YARA Rules Rule: Basic or Advanced?

4

Christopher S. Culling, csculling1@gmail.com

2. Research Method

The research for this paper was conducted on a fresh installation of Linux Ubuntu

18.04 running in VMWare Workstation 14 Professional. All of the updates, upgrades, and

installations of required components for both Ubuntu and the software used in this

research were made as needed.

2.1. Tools to Aid in Writing and Executing YARA Rules

Malware must first be analyzed to determine its contents and attributes before

YARA rules targeting that specific malware can be created. There are numerous tools

that can be utilized to do this and which also can aid in the writing and execution of

YARA rules. Several of them were used during this research, including the YARA tool

(described in the Introduction), yarGen (Roth, 2018), pe (Te-k, 2018), Simple Static

Malware Analyzer (SSMA) (Khasaia, 2018), and Joe Sandbox Cloud (Joe Security,

2018). Several collections of tools that analysts can use in the examination of malware,

which were not used for this paper but are worth mentioning, are REMnux and the SANS

Investigative Forensics Toolkit (SIFT). REMnux, a “free Linux toolkit for assisting

malware analysts with reverse-engineering malicious software” (Zeltser, n.d.) is an

excellent open-source platform for users who are interested in malware reverse-

engineering and analysis. SIFT is also an excellent open-source collection of incident

response and forensic tools that can be incorporated into REMnux (SANS, 2018). Users

should be sure to update and upgrade the tools in both collections before first use.

While REMnux and SIFT contain a multitude of different tools, and are excellent

resources, starting with YARA, yarGEN, pe, SSMA, and Joe Sandbox Cloud (or another

open-source malware sandbox) can provide plenty of data from which to begin writing

quality YARA rules.

2.1.1. yarGen

yarGen is a YARA rule generator used in this research, which when run against a

file, will output potential malware strings. What separates it from other YARA-related

tools is the large goodware strings and opcode database that comes with it. These features

allow for the distinction between malware strings and strings that can, for the most part,

Which YARA Rules Rule: Basic or Advanced?

5

Christopher S. Culling, csculling1@gmail.com

be ignored. yarGen then takes its output and generates a YARA rule for the file, and

possibly a super rule when scanning multiple, similar files at the same time (Roth, 2018).

yarGen outputs rules that are sufficient to use as-is. However, to optimize them so that

they are "sufficiently generic" to match more than one sample, users should read the

three-part series entitled, “How to Write Simple but Sound Yara Rules” (Roth, 2015a,

2015b, 2016a).

2.1.2. pe

pe is a tool that delves into the Portable Executable (PE) file, which is found

within several different file types and contains information that allows the Windows

Operating System loader to work with the wrapped executable code (Revers3r, 2018). pe

can extract data from a PE file, search for a string within a PE file, or check to see if

anything in the PE file is out of the ordinary (Te-k, 2018).

2.1.3. Simple Static Malware Analyzer (SSMA)

SSMA is a simple analyzer that provides static malware analysis. One of its many

capabilities is to scan the malware with its comprehensive YARA rules database which

searches for the existence of well-known software packers, cryptographic algorithms and

evasion processes, and looks for Windows functions commonly used by malware

(Khasaia, 2018).

2.1.4. Joe Sandbox Cloud

Joe Sandbox Cloud is a dynamic malware analyzer which “executes files […] in a

controlled environment and monitors the behavior of applications and the operating

system for suspicious activities” and produces comprehensive reports in multiple formats

(Joe Security, 2018). Appendix C contains the full report of a scan of one of the malware

samples to show the amount of information one of these reports can provide. This report

can be used to create YARA rules, determine firewall rules, and take various other

network defense measures.

2.2. Static Analysis of Malware Samples

The malware samples used for this research consisted of six samples of Equation

Group’s malware strain EquationLaser, and 261 samples of their FannyWorm malware

Which YARA Rules Rule: Basic or Advanced?

6

Christopher S. Culling, csculling1@gmail.com

strain (Shalev, 2017). Equation Group is thought to have been formed anywhere between

1996 and 2002 and has infected systems in multiple sectors around the world ever since

(GReAT, 2015). EquationLaser malware was last seen in use between 2001 and 2004,

while FannyWorm was on the scene from 2008 to 2011 (Zetter, 2015).

Static analysis of these samples was conducted using yarGen to produce initial

YARA rules. yarGen created an individual rule for each piece of EquationLaser malware

along with one super rule for the group, along with 37 individual rules and one super rule

from the FannyWorm samples. SSMA and pe were then run against each piece of

EquationLaser malware and six randomly-chosen FannyWorm samples to discover the

internal characteristics of each against which basic and advanced YARA rules could be

crafted.

2.3. Dynamic Analysis of Malware Samples

The research then progressed to dynamic analysis of the malware samples by

scanning the six previously analyzed files from each malware strain with Joe Sandbox

Cloud.

The results of the static and dynamic analysis of the malware samples and the

associated analysis of the data generated from the tools used to analyze the malware are

detailed in the following section.

3. Findings and Discussion

Many of the articles reviewed during the research for this paper regarding YARA

rules often rehash the official documentation posted by YARA’s creator, Victor Alvarez.

And even those articles primarily discussed the more basic aspects of YARA.

Additionally, there were no relevant articles in the EBSCOhost research database and

very few scholarly articles in Google Scholar on the topic, most of which only mentioned

the existence of YARA rules. There were, however, a handful of YARA superusers, such

as Florian Roth and Ricardo Dias, who wrote about how to utilize YARA’s more

advanced functions and who described uses of particular features in ways not found in

Which YARA Rules Rule: Basic or Advanced?

7

Christopher S. Culling, csculling1@gmail.com

Mr. Alvarez's original YARA documentation. Their writings will form the basis for much

of this research paper and future research.

The most current official YARA documentation can be found in HTML

(VirusTotal, n.d.) or PDF format (Alvarez, 2018). It covers YARA installation, how to

write YARA rules, YARA modules (add-on features with advanced functionality), how

to write modules, running YARA from the command line and via Python, and utilizing

the C API to integrate YARA into C/C++ projects.

While the intent of this paper is not to teach users how to use YARA, the concept

of how YARA rules work is necessary to understand the research that was conducted. To

that end, the writing of YARA rules, executing YARA rules, and what would constitute

basic rules and advanced rules will be covered, as it is presented in the official

documentation and by several YARA superusers. For instructions on how to install

YARA, and for a full description of all of YARA’s capabilities, see the official

documentation (Alvarez, 2018).

3.1. Introduction to Writing YARA Rules

Every YARA rule begins with the keyword rule, followed by the name of the

rule. The rule itself is enclosed by curly brackets { }, within which lies the parameters of

the rule. Rules are primarily made up of two sections. The first, which contains specific

strings (text, hexadecimal, or regular expressions), can be omitted if the rule does not

include a string. The second, the condition, which will define what triggers the rule, is a

requirement for all YARA rules. A simple example rule, taken from the official YARA

documentation (Alvarez, 2018) appears as follows:

rule ExampleRule

{

 strings:

 $my_text_string = "text here"

 $my_hex_string = { E2 34 A1 C8 23 FB }

Which YARA Rules Rule: Basic or Advanced?

8

Christopher S. Culling, csculling1@gmail.com

 condition:

 $my_text_string or $my_hex_string

}

If a file that contained either the identified text or the specific hex string had this

rule run against it, it would indicate a match, due to the use of or in the condition. If the

text or hex string were located within a piece of malware, YARA would indicate that it

made a positive match.

Rules can also have comments added to them following C coding comment rules

(Alvarez, 2018):

/*

This is a multi-line comment ...

*/

rule CommentExample // ... and this is single-line comment

3.1.1. Strings

Three types of strings are allowed in YARA rules: hexadecimal, text, and regular

expression (Alvarez, 2018). A basic YARA rule would be one that primarily relied on the

use of strings to identify a piece of malware.

Hexadecimal strings can be used with wild-cards, jumps, and alternatives. An

example of using wild-cards (or placeholders signified by a question mark) in a rule is as

follows:

rule Example_Wildcard

{

 strings:

 $a1 = { 55 3? AB ?? 67 }

Which YARA Rules Rule: Basic or Advanced?

9

Christopher S. Culling, csculling1@gmail.com

 condition:

 $a1

}

When a user knows the exact number of missing hex characters, wild-cards are

the option to use. However, when the exact number of missing characters is not known,

jumps would be used instead of wild-cards. Jumps follow the pattern of (Alvarez, 2018):

[X - Y] where 0 <= X <= Y

For example (Alvarez, 2018):

rule JumpExample

{

 strings:

 $hex_string = { F4 23 [4-6] 62 B4 }

 condition:

 $hex_string

}

In this case, either four, five, or six sets of hex characters could be contained

within the [] brackets.

Alternative hex strings resemble regular expressions, such as this example:

rule Example_Hex_String

{

 strings:

 $hex_string = { AB 23 (62 5? | 65 | 8C ?? ??) 21 }

 condition:

 $hex_string

}

Which YARA Rules Rule: Basic or Advanced?

10

Christopher S. Culling, csculling1@gmail.com

In addition to hex strings, text strings may be used. The simplest use of a text

string would be the following:

rule Example_Text_String

{

 strings:

 $a1 = "Missouri"

 condition:

 $a1

}

The following modifiers can appear at the end of a text string (Alvarez, 2018):

• nocase = makes the text string, which is normally case-sensitive, case-insensitive

• wide = searches for text strings encoded with two bytes per character

• ascii = searches for text strings in ascii format (this is the assumed default)

• xor = searches for text strings with a single byte XOR applied

• fullword = only matches text string if delimited by non-alphanumeric characters

An example of the use of some of these modifiers is as follows:

rule ModifierTextExample

{

 strings:

 $wide_and_nocase_string = "Texas" wide nocase

 condition:

 $wide_and_nocase_string

}

Which YARA Rules Rule: Basic or Advanced?

11

Christopher S. Culling, csculling1@gmail.com

This rule would indicate a positive match if the word “Texas” was encoded with

two bytes per character and if it appeared in any form of upper and lower-case characters.

Regular expressions can also be used as strings and are enclosed in forward

slashes / instead of quotes like the text strings. The specific regular expression syntax

allowed when creating a YARA rule can be found in the official documentation (Alvarez,

2018). While regular expressions provide a wide range of flexibility when creating rules,

they should be used sparingly as they significantly slow down YARA’s evaluation of the

target file. Users should try to use hex strings with wild-cards and jumps if they can be

used instead (Roth, 2016b).

3.1.2. Conditions

The second part of a YARA rule, and the only required component within the

rule, is the condition. Conditions are Boolean expressions that contain the operators and,

or, and not, relational operators such as >= and ==, arithmetic operators, and bitwise

operators, such as >>. Conditions define what will cause the rule to activate on the target

file, folder, or process (Alvarez, 2018).

For example, in the following rule, the condition defines what strings will return a

positive hit on the target:

 rule Example_Condition

{

 strings:

 $string1 = "text1"

 $string2 = "text2"

 $string3 = "text3"

 $string4 = "text4"

 condition:

 ($string1 or $string2) and ($string3 or $string4)

}

Which YARA Rules Rule: Basic or Advanced?

12

Christopher S. Culling, csculling1@gmail.com

In this case, if the string “a” or” b” and the string “c” or “d” are present in the

target, YARA will indicate their presence.

3.1.3. Metadata

In addition to strings and conditions, rules can also contain metadata information.

The only use of the metadata section is to store additional data about the rule and is

indicated by the word meta. Similar to strings, each piece of metadata begins with an

identifying phrase, followed by an equals sign, followed by the information. The

following shows how the metadata section is used (Roth, 2015a):

rule Enfal_Generic

{

 meta:

 description = "Auto-generated rule - from 3 different files"

 author = "YarGen Rule Generator"

 reference = "not set"

 date = "2015/02/15"

 super_rule = 1

 hash0 = "6d484daba3927fc0744b1bbd7981a56ebef95790"

 hash1 = "d4071272cc1bf944e3867db299b3f5dce126f82b"

 hash2 = "6c7c8b804cc76e2c208c6e3b6453cb134d01fa41"

Once the user has defined the strings (based on the analysis of the malware

sample), and has determined the conditions and any optional metadata, he or she is ready

to run the rule(s) against the target.

3.2. Executing YARA Rules

To run YARA against a file, folder, or process, the user would apply the

following command line syntax (obtained via the “yara -h” command):

Which YARA Rules Rule: Basic or Advanced?

13

Christopher S. Culling, csculling1@gmail.com

The scan uses rules that can be found in source code or be compiled. One or

multiple YARA rule files can be run against the target. More in-depth details and

examples regarding how to execute YARA rules are found in the official YARA

documentation (Alvarez, 2018).

3.3. Basic YARA Rules

As previously stated, basic YARA rules search for predefined strings within the

target file, folder, or process. These rules are primarily concerned with the detection of a

signature within the target that matches the assigned string or strings.

An example of a basic rule would be the following (AlienVault Labs, 2017):

rule LIGHTDART_APT1

{

 meta:

 author = "AlienVault Labs"

 info = "CommentCrew-threat-apt1"

Which YARA Rules Rule: Basic or Advanced?

14

Christopher S. Culling, csculling1@gmail.com

 strings:

 $s1 = "ret.log" wide ascii

 $s2 = "Microsoft Internet Explorer 6.0" wide ascii

 $s3 = "szURL Fail" wide ascii

 $s4 = "szURL Successfully" wide ascii

 $s5 = "%s&sdate=%04ld-%02ld-%02ld" wide ascii

 condition:

 all of them

}

An example of a basic rule with a more complex condition is (AlienVault Labs,

2017):

rule CCREWBACK1

{

 meta:

 author = "AlienVault Labs"

 info = "CommentCrew-threat-apt1"

 strings:

 $a = "postvalue" wide ascii

 $b = "postdata" wide ascii

 $c = "postfile" wide ascii

 $d = "hostname" wide ascii

 $e = "clientkey" wide ascii

 $f = "start Cmd Failure!" wide ascii

 $g = "sleep:" wide ascii

Which YARA Rules Rule: Basic or Advanced?

15

Christopher S. Culling, csculling1@gmail.com

 $h = "downloadcopy:" wide ascii

 $i = "download:" wide ascii

 $j = "geturl:" wide ascii

 $k = "1.234.1.68" wide ascii

 condition:

 4 of ($a,$b,$c,$d,$e) or $f or 3 of ($g,$h,$i,$j) or $k

}

While there are many useful rules in this ruleset (70 rules in total targeting APT1

malware), none of them move beyond this paper’s definition of a basic rule.

3.4. Advanced YARA Rules

Advanced YARA rules, as opposed to basic rules, are geared more toward the

behavior or characteristics of the target, versus a string-based signature. They are

designed to be more "resilient," making it harder for an attacker to evade them

(Anonymous, personal correspondence, May 11, 2017).

While many advanced rules may still search for strings, they will contain

additional features in the condition section. As previously mentioned, YARA rules do not

require any strings to be considered a valid rule and can run on condition statements

alone. However, if the user does decide to create strings, which strings they use, the

relative importance applied to each one, and how they apply conditions to them can also

elevate a rule from a basic to an advanced level (Roth, 2015a, 2015b, 2016a).

3.4.1. Magic Number

One condition variable that can elevate a rule from basic to advanced is the magic

number variable. The magic number is used by applications and operating systems to

determine the type of file with which it is working and is located at the beginning of the

file. For example, the hex value 4D 5A at the beginning of a file indicates a

Windows/DOS executable file. The values 4D 5A in hex equate to the characters MZ, or

the initials of Mark Zbikowski, the individual who designed the DOS executable file

Which YARA Rules Rule: Basic or Advanced?

16

Christopher S. Culling, csculling1@gmail.com

format. Additionally, the hex values 25 50 44 46 at the beginning of a file would indicate

that the file is a PDF. Therefore, if the file type is known when the user is crafting the

YARA rule, the addition of the magic number variable in the condition will allow the rule

to ignore those files which don't match, speeding up the search process. There are many

locations on the Internet where lists of file types and their matching hex signatures can be

found, with one very comprehensive list that is maintained by Gary Kessler (2018).

3.4.2. Locating Data at a Given Offset or Virtual Address

YARA uses the following functions to search for a particular string or value at a

given offset within a file or virtual memory address:

 int8(<offset or virtual address>)

 int16(<offset or virtual address>)

 int32(<offset or virtual address>)

 uint8(<offset or virtual address>)

 uint16(<offset or virtual address>)

 uint32(<offset or virtual address>)

 int8be(<offset or virtual address>)

 int16be(<offset or virtual address>)

 int32be(<offset or virtual address>)

 uint8be(<offset or virtual address>)

 uint16be(<offset or virtual address>)

 uint32be(<offset or virtual address>)

The official YARA documentation describes this functionality as:

The intXX functions read 8, 16, and 32 bits signed integers from <offset or

virtual address>, while functions uintXX read unsigned integers. Both 16

and 32-bit integers are considered to be little-endian. If you want to read a

big-endian integer use the corresponding function ending in be. The

Which YARA Rules Rule: Basic or Advanced?

17

Christopher S. Culling, csculling1@gmail.com

parameter can be any expression returning an unsigned integer, including

the return value of one the uintXX functions itself (Alvarez, 2018).

As some analysts may have no problem understanding how to use this feature,

many may not. To that end, the following use case is provided to show how this

powerful function may be effectively utilized.

If the malware that needed to be detected was a Windows executable, the MZ file

signature (indicating a Windows/DOS file) and PE file signature (indicating an

executable file) hex values would both need to be located and matched. A YARA rule

written to accomplish this would appear as such (Alvarez, 2018):

rule IsPE

{

 condition:

 // MZ signature at offset 0 and ...

 uint16(0) == 0x5A4D and

 // ... PE signature at offset stored in MZ header at 0x3C

 uint32(uint32(0x3C)) == 0x00004550

}

As the first comment after the condition statement above indicates, the MZ file

signature ((which is a two-byte, unsigned integer (uint16) and little-endian)) should be

located at file offset 0 and will be written in reverse order in the rule due to its endianness

(5A4D versus 4D5A, or ZM versus MZ). The example graphic below, which puts this

process into perspective (Wikibooks, 2018), shows that this is an MZ file (note the 4D 5A

located at offset 0). Next, the hex for the PE file signature ((which is a four-byte,

unsigned integer (uint32) and little-endian)), when translated reads PE/0/0 (or 00EP, as

shown in the example above due to its endianness). The uint32(0x3C) address is first

located in the MZ header and contains the hex value D8. If this is an actual PE file,

location 0xD8 should contain the PE file indicator 0x50450000.

Which YARA Rules Rule: Basic or Advanced?

18

Christopher S. Culling, csculling1@gmail.com

As we can see from the above graphic, the hex value 0xD8 located at offset

uint32(0x3C) does, in fact, point to the hex value for a PE file. Adding this short but

effective condition to all YARA rules that are designed to detect Windows executable

files can increase its effectiveness by cutting down on false positives and speeding up the

detection process.

3.4.3. Filesize

Another advanced condition variable is the filesize variable. This variable can

only be used with targets that are files and that can be appended with KB or MB which

will multiply the number by 1024 or 2^20, respectively (Alvarez, 2018). An example of

the filesize variable follows:

rule Example_Filesize

{

 condition:

 filesize < = 300KB

}

In the above example, this rule will detect any file that is less than or equal to

300KB. As many pieces of malware are often quite small, defining the size of the file that

is being detected can greatly increase the speed at which YARA performs its search, as

the search pool has just been reduced.

Which YARA Rules Rule: Basic or Advanced?

19

Christopher S. Culling, csculling1@gmail.com

3.4.4. Portable Executable (PE) Module

YARA has external modules that provide additional functionality on top of the

base program. These include the PE, Executable and Linkable Format (ELF), Cuckoo,

Magic, Hash, Math, dotnet, and Time Modules. Due to the length constraints of this

research paper, only the PE module will be explored, but it is recommended to study the

other modules and their uses from the official YARA documentation (Alvarez, 2018).

The PE module is an excellent place to start creating advanced YARA rules as the

various tools discussed in this paper can yield a vast amount of information found in the

PE header against which to write YARA rules. As Alvarez states, “The PE module allows

you to create more fine-grained rules for PE files by using attributes and features of the

PE file format. This module exposes most of the fields present in a PE header and

provides functions which can be used to write more expressive and targeted rules”

(Alvarez, 2018). The vast amount of condition statements that can be crafted into YARA

rules regarding fields and characteristics of a PE file that stem from the PE module makes

this resource an important one to learn and incorporate into advanced YARA rules.

To use the PE module in a YARA rule, or set of rules, the user must first activate

the module by adding the command import “pe” to the start of the rule file. The

arguments used with the PE module all begin with pe and are found within the condition

section of the rule.

An example of the PE module usage in a rule follows (Alvarez, 2018):

import "pe"

rule single_section

{

 condition:

 pe.number_of_sections == 1

}

rule control_panel_applet

{

Which YARA Rules Rule: Basic or Advanced?

20

Christopher S. Culling, csculling1@gmail.com

 condition:

 pe.exports("CPlApplet")

}

rule is_dll

{

 condition:

 pe.characteristics & pe.DLL

}

There are PE module arguments whereby the data for the argument can be easily

collected using tools such as SSMA and pe. One argument that will play a prominent role

in the findings component of this research is pe.imphash, which refers to the PE file’s

import hash. As found in the FireEye security blog, an unnamed writer from the company

Mandiant states “Imports are the functions that a piece of software calls from other files

(typically various DLLs that provide functionality to the Windows operating system)

(Mandiant, 2014). Additionally, they go on to explain that the imphash can be used to

identify malware samples that are related (Mandiant, 2014).

Another argument, pe.entry_point, refers to the address where the PE loader starts

to run the executable portion of the file (Revers3r, 2018). This is a common location for

software packers to begin their code. Both the entry point and imphash values can be

found using the info argument when running the tool pe. If the number of imports or

exports in the PE is known, pe.number_of_imports or pe.number_of_exports can be used.

The official YARA documentation contains nine pages of PE arguments that can be used

in the condition statement of a rule, and the PE module is a good place to start learning

about YARA module usage and capabilities.

3.4.5. YARA Performance Guidelines

The guidance provided in “YARA Performance Guidelines” (Roth, 2016b),

covers ways to craft YARA rules to achieve the highest level of performance from them.

This section has already touched upon several of the topics. Some of the additional

Which YARA Rules Rule: Basic or Advanced?

21

Christopher S. Culling, csculling1@gmail.com

subjects Roth covers are global rules, the most efficient ways to write strings, and

condition statements which use a newer YARA feature called short-circuit evaluation,

which can potentially improve the execution time of a YARA rule depending on the order

in which the condition statement is written.

3.4.6. Advanced YARA Rules Use Case

In Ricardo Dias’ three-part series, “Unleashing YARA” (2016a, 2016b, 2016c),

he discusses the usefulness of YARA in an Incident Response Team and walks the reader

through a very detailed, advanced YARA use case. This is highly recommended reading

for any user who is serious about improving their YARA rule writing abilities.

3.5. Static Analysis Findings

3.5.1. yarGen Findings

For the initial static malware analysis, yarGen was run against the six

EquationLaser malware samples using the [-z 0] option to see both malware and

goodware strings. After removing the goodware strings, the generated YARA rules for all

six samples were the same, including the super rule for the set. What follows is the super

rule, which was edited to remove non-essential information, the goodware strings, and

the condition, which previously contained “and 8 of them” (referring to the strings) and

was changed to “and all of them” as was found in the individual rules:

rule _EquationLaser {

 meta:

 description = "EquationLaser

 author = "yarGen Rule Generator"

 reference = "https://github.com/Neo23x0/yarGen"

 date = "2018-06-30"

 hash1 =

"5e97f0cc3407c56ee5e6233b7573bd6eb05ffe22949bd12c1d1a26b2ab21d827"

Which YARA Rules Rule: Basic or Advanced?

22

Christopher S. Culling, csculling1@gmail.com

 hash2 =

"58e78c653b2a92469963759fc88029c4badc7138e7654005dd1c5904fae163d5"

 hash3 =

"a3b324cefbf81d3f1dbd573e64c453cb4d8a53ac54687d0c4caa0d1cbc409a51"

 hash4 =

"c5642a2135fd315e754f8af20f92117bba50b17682021e7448019e043aa1edc9"

 hash5 =

"fecfe25aaeec3911fee183ff0988ea9045a30d6c1620ed57b1ad134d86dc2ee3"

 hash6 =

"ec2a717739947d3512513889bbecd9a0dac3fb65f8e171f8a0835abe8c1537e3"

 strings:

 $s1 = "lsasrv32.dll and lsass.exe" fullword wide

 $s2 = "lsasrv32.dll" fullword ascii

 $s3 = "Failed to get Windows version" fullword ascii

 $s4 = "\\\\%s\\mailslot\\%s" fullword ascii

 $s5 = "%d-%d-%d %d:%d:%d Z" fullword ascii

 $s6 = ":#:/:E:J:\\:f:" fullword ascii

 $s7 = " !!" fullword ascii

 condition:

 uint16(0) == 0x5a4d and filesize < 400KB and pe.imphash() ==

 "ee845c2ebf05004bb904724010b3d898" and all of them

}

When yarGen was next run against the 261 FannyWorm samples, 37 individual

rules were generated along with one super rule. Of the individual rules, 22 were unique,

one had five matches, three had two matches, and one had four matches. The super rule,

which follows, was edited in the same manner as the previous rule:

Which YARA Rules Rule: Basic or Advanced?

23

Christopher S. Culling, csculling1@gmail.com

rule FannyWorm {

 meta:

 author = "yarGen Rule Generator"

 reference = "https://github.com/Neo23x0/yarGen"

 date = "2018-06-30"

 hash1 - hash 261

 description = "FannyWorm”

 strings:

 $x1 = "c:\\windows\\system32\\kernel32.dll" fullword ascii

 $s2 = "\\shelldoc.dll" fullword ascii

 $s3 = "\\system32\\win32k.sys" fullword wide

 $s4 = "dll_installer.dll" fullword ascii

 $s5 = "32.exe" fullword ascii

 $s6 = "Global\\RPCMutex" fullword ascii

 $s7 = "System\\CurrentControlSet\\Services\\PartMgr\\Enum" fullword ascii

 $s8 = "x:\\fanny.bmp" fullword ascii

 $s9 = "d:\\fanny.bmp" fullword ascii

 $s10 = "Q:__?__.lnk" fullword ascii

 $s11 = "='=2=:=d=" fullword ascii /* hex encoded string '-' */

 $s12 = "fseek(SEEK_SET) failed" fullword ascii

 $s13 = "file size = %d bytes" fullword ascii

 $s14 = "4%5F5J5N5R5V5Z5^5b5f5j5n5r5v5z5~5" fullword ascii

 $s15 = "Software\\Microsoft\\MSNetMng" fullword ascii

 condition:

Which YARA Rules Rule: Basic or Advanced?

24

Christopher S. Culling, csculling1@gmail.com

 uint16(0) == 0x5a4d and filesize < 500KB and pe.imphash() ==

 "1f5e76572fad36553733428ca3571f53" and all of them

}

Some observations about the yarGen results:

1. yarGen identified and added the MZ file signature (uint16(0) == 0x5a4d) and

filesize to each malware sample, reinforcing the importance of using those

conditions when writing rules.

2. Each set of malware samples, regardless of whether or not the individual rules

contained the same strings or not, had the same PE import hash (pe.imphash).

This indicates that the behavior of each file was the same, regardless of the file’s

overall hash value or the individual strings which were identified for it. A YARA

rule containing only that condition should provide a positive match every time on

a piece of malware from that particular strain.

3. Removing the pe.imphash statement from the condition did not change the

overall results in that each super rule positively identified every malware sample

in each set as being malware. However, because each sample was able to be

analyzed prior to running YARA rules against it, the advantage fell to the

researcher. Future variants of either of these malware strains may have different

identifying strings, which would not be caught by the strings used in this research.

However, because the PE import hash remained constant, that condition alone

would more than likely to catch future variants.

3.5.2. SSMA Findings

The SSMA scans for all six EquationLaser and six randomly selected

FannyWorm malware samples were identical within each group. Examples of the scan

results are found in Appendices A and B. The FannyWorm sample hashes were as

follows:

 f4bff0768e2e548aad03a51b00077c30c1865c54385b060ed8f4325812da13aa

 d3b1ea2ef9bf92af1c15f8a0426a73fbec43cef2f35695d316d41991e5116c3d

Which YARA Rules Rule: Basic or Advanced?

25

Christopher S. Culling, csculling1@gmail.com

 81d3f13409fb76f973fdb090b945eca7b2cdea16e5ee0d7bae70acb6bc90e5c1

 3ee093ba4872dc47d28b2437cc5fa404f69209339cc75e0d172b7fd38d324410

 e6a54eedfdfdd2edd9c86ae211a37f7b7742bb573b4ecb523e56006291aa2b50

 e9e130eec84985f18e6f5c69a222e575acd7976f804fb224a622e34aa93bd495

 The SSMA results for EquationLaser pointed out a suspicious PE file .data

section size, two PE file sections (.data and Shared) with either very high or very low

entropy numbers (indicating compression or encryption), a PE file section suspiciously

named Shared, and the presence of four bytes of overlay data, or extra data often

associated with malware. SSMA then lists a number of Windows functions commonly

used by malware and is followed by positive matches using its internal YARA rule

collection. SSMA’s YARA rules were positive for the existence of well-known malware,

software packers, cryptographic algorithms, and anti-debug/anti-virtualization processes

within the malware samples.

 The SSMA results for FannyWorm contained less information than for

EquationLaser. However, both sets of malware almost had the same positive hits from the

YARA rule scans, which is a strong indication that they both belong to the same overall

malware family.

 One point to highlight from the SSMA findings is that SSMA uses a YARA rules

database that is not designed to discover specific strains of malware but instead is

designed to identify typical characteristics of malware, such as the presence of software

packers and cryptographic algorithms.

3.5.3. pe Findings

The following graphic shows the findings of a pe scan on one of the

EquationLaser samples. The usage, as shown at the top of the below figure, is easy to use.

For this research, the arguments check, search, checksize, and info were used. While it

shows similar data as SSMA, one new piece of information that it provides is the PE file

entrypoint when using the info argument. The second figure below shows the beginning

of the Imports section, which contains information that is useful for the PE Module, and

Which YARA Rules Rule: Basic or Advanced?

26

Christopher S. Culling, csculling1@gmail.com

the third figure shows the six files that every EquationLaser malware sample exported

during execution.

Which YARA Rules Rule: Basic or Advanced?

27

Christopher S. Culling, csculling1@gmail.com

3.6. Dynamic Analysis Findings

3.6.1. Joe Sandbox Cloud Findings

While an analyst can obtain a lot of useful information by performing a static

analysis of a piece of malware, more data may be found when they dynamically analyze

the malware by executing it in a contained environment.

Which YARA Rules Rule: Basic or Advanced?

28

Christopher S. Culling, csculling1@gmail.com

The results of the analysis performed by Joe Sandbox Cloud were quite detailed.

The reports revealed many different malware characteristics from which quality YARA

rules could be generated. For example, they list files that the malware may drop onto the

target computer which can then be separately analyzed to create more detailed, granular

YARA rules. Additionally, the reports reveal the characteristics of the malware while it is

executing, providing more points of reference from which to create advanced YARA

rules than static malware analysis alone can provide. A report of the analysis conducted

on one of the FannyWorm malware samples can be found in Appendix C. Each set of

malware that was run through the Sandbox produced mostly similar results. It is assumed

that variations in results between the malware in each strain occurred because the

malware was only run once and only for several minutes. Additionally, the malware

contained malware analysis system evasion processes, anti-virus detection, and other

protections, which could cause each malware sample to behave differently in the

Sandbox, even if all of them essentially perform the same function.

While the results of the Joe Sandbox Cloud analysis of the 12 pieces of malware

ultimately was not used to inform the final recommendations of this research, they do

play a crucial part in providing information above and beyond what any static malware

analysis could provide. For example, one Joe Sandbox report stated that the malware

sample dropped PE files which had not been started and that the Sandbox should also run

those files for analysis.

The amount of information that dynamic malware analysis provides that can be

used in writing advanced YARA rules should not be overlooked and learning how to

perform malware analysis should be part of any serious YARA rule-user’s skillset.

4. Recommendations and Implications

Upon beginning this research, the question - which YARA rules were more

effective, basic or advanced - appeared to be an either/or proposition. However, as it

turns out, the entire spectrum of YARA rules are needed to ensure complete coverage

against malware threats.

Which YARA Rules Rule: Basic or Advanced?

29

Christopher S. Culling, csculling1@gmail.com

4.1. Recommendations for Use in the Field

Basic YARA rules can be easily assembled based on the first identified piece of

malware in a matter of minutes-- and they should be, in order to quickly deploy them into

the ever-growing, various network defense components that accept YARA rules as one of

their Indicator of Compromise (IOC) inputs (such as Tanium and Nessus). If they are not

initially written in a manner with will limit false positives, they should eventually be

updated accordingly. Guidance for doing this can be found in Florian Roth’s “How to

Write Simple but Sound YARA Rules” series (2015a, 2015b, 2016a).

However, as the research has shown, the strings that basic YARA rules rely upon

can change, making the current, basic YARA rules ineffective. To counter this, further

analysis of the malware samples must be taken to understand their behavior and

characteristics, which are less likely to change compared to their string signatures. Using

the magic number and filesize parameters in every YARA rule written will provide an

immediate advantage as those are variables that are unlikely to change over time. While

strings may change, a malware’s core behavior should remain consistent. As the PE file

contains the “brains” of the executable, and as the research has shown that it remains

remarkably consistent within individual malware strains, utilizing YARA’s PE Module is

an excellent, advanced usage of YARA. Breaking down the PE file with various tools

such as SSMA, pe, and Joe Sandbox Cloud should yield a multitude of different attributes

from which to craft advanced YARA rules.

Once more advanced, “resilient” rules are created for a malware strain, the

chances of it slipping through a network’s defenses are lessened. And, as previously

stated, YARA rules should also be tuned to perform most effectively (Roth, 2016b).

Lastly, YARA can be used proactively to scan the network to look for files that

contain well-known software packers, cryptographic algorithms, and anti-debug/anti-

virtualization techniques that malware may use to hide from discovery, as demonstrated

by SSMA.

Which YARA Rules Rule: Basic or Advanced?

30

Christopher S. Culling, csculling1@gmail.com

4.2. Implications for Future Research

Developing a reference that contains multiple use cases involving all levels of

YARA rules would be the most beneficial future YARA rule research. Robert M. Lee,

who teaches the use of YARA rules in his SANS courses, states, “There’s a lot of

functionality that folks aren’t aware of and many ways to use it that aren’t clearly

documented or explored” (R. Lee, personal correspondence, May 12, 2017). While the

official documentation explains how to use YARA, only a handful of YARA superusers

have shown how to use YARA rules in specific instances or how to take true advantage

of its advanced features. One document or site which captures use cases or YARA’s

advanced features would be most useful, allowing researchers or analysts to determine

which types of YARA rules would work best in their situation.

Another worthwhile subject for future research into YARA rules would include

the development of best practices and techniques to employ YARA rules in threat

hunting situations, as suggested by Robert M. Lee (R. Lee, personal communication, May

7, 2017). While YARA rules were initially developed mainly for malware classification

and incident handling, they are adaptable enough to be used as one more tool in a red

team’s arsenal.

Qualitative research that employs surveys to discover how the YARA-using

community actually uses the rules would be another informative research topic, allowing

for the assessment of gaps which could be explored in further research.

Documenting what tools exist that would benefit a malware researcher throughout

the entire YARA rule-creation process and ranking them based on their effectiveness via

comparative demonstrations and analysis, would also be useful to the YARA-using

community.

Finally, Dr. Johannes Ullrich, SANS Senior Instructor (J. Ullrich, personal

communication, March 5, 2018), suggested a worthwhile subject to explore would be the

use of YARA rules to detect malware utilizing obfuscation techniques. This is an

especially important area for research as malware is increasingly becoming more and

more sophisticated in its makeup.

Which YARA Rules Rule: Basic or Advanced?

31

Christopher S. Culling, csculling1@gmail.com

5. Conclusion

More often than not, analysts who utilize YARA rules in their discovery and

classification of malware resort to using the most basic features and functionality of

YARA. This conclusion led to this paper’s research question: When attempting to

identify malware, how much more effective, if at all, is the utilization of more complex,

advanced YARA rules than the use of easier-to-write, basic rules?

According to the research conducted, the entire range of YARA rules, from basic

to advanced, have their part to play when searching for malware, and every level of rule

has value to add. Initially, developing basic rules to catch the first wave of a new

malware strain might be all that’s needed. The ease and speed with which these rules can

be created will allow network defenders to quickly add an additional layer of detection

and protection to their networks. However, it should be emphasized that as malware

evolves, and as different variants are created, they may not continue to be detected by

YARA’s basic rules. In this case, the need to develop the skills to utilize YARA’s more

advanced functionality by searching for characteristics of behavior versus string matches

would be a worthwhile endeavor.

For a comprehensive list of YARA rules, tools, services, people, and much more,

please see “A curated list of awesome YARA rules, tools, and people” (InQuest, 2018).

Which YARA Rules Rule: Basic or Advanced?

32

Christopher S. Culling, csculling1@gmail.com

References

AlienVault Labs. (2017, January 21). rules/malware/APT_APT1.yar. Retrieved from

https://github.com/Yara-Rules/rules/blob/master/malware/APT_APT1.yar

Alvarez, V. (2018, June 19). yara Documentation, Release 3.7.0. Retrieved from

https://media.readthedocs.org/pdf/yara/latest/yara.pdf

Dias, R. (2016a, February 10). Unleashing YARA - Part 1. Retrieved from

https://countuponsecurity.com/2016/02/10/unleashing-yara-part-1/

Dias, R. (2016b, February 18). Unleashing YARA - Part 2. Retrieved from

https://countuponsecurity.com/2016/02/18/unleashing-yara-part-2/

Dias, R. (2016c, March 9). Unleashing YARA - Part 3. Retrieved from

https://countuponsecurity.com/tag/malware-analysis/

GReAT. (2015, February 16). Equation: The Death Star of Malware Galaxy. Retrieved

from https://securelist.com/equation-the-death-star-of-malware-galaxy/68750/

InQuest. (2018, June 13). A curated list of awesome YARA rules, tools, and people.

Retrieved from https://github.com/InQuest/awesome-yara#rules

Joe Security. (2018, n.d.) Joe Sandbox Cloud. Retrieved from

https://www.joesecurity.org/joe-sandbox-cloud

Kessler, G. (2018, February 23) File Signatures Table. Retrieved from

https://www.garykessler.net/library/file_sigs.html?utm_source=tool.lu

Khasaia, L. (2018, April 1). SSMA - Simple Static Malware Analyzer. Retrieved from

https://github.com/secrary/SSMA

Mandiant. (2014, January 23). Tracking Malware with Import Hashing. Retrieved from

https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-

hashing.html

Revers3r. (2018). Malware Researcher’s Handbook (Demystifying PE File). Retrieved

from https://resources.infosecinstitute.com/2-malware-researchers-handbook-

demystifying-pe-file/

Roth, F. (2015a, February 16). How to Write Simple but Sound Yara Rules. Retrieved

from https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/

https://github.com/Yara-Rules/rules/blob/master/malware/APT_APT1.yar
https://media.readthedocs.org/pdf/yara/latest/yara.pdf
https://countuponsecurity.com/2016/02/10/unleashing-yara-part-1/
https://countuponsecurity.com/2016/02/18/unleashing-yara-part-2/
https://countuponsecurity.com/tag/malware-analysis/
https://securelist.com/equation-the-death-star-of-malware-galaxy/68750/
https://github.com/InQuest/awesome-yara%23rules
https://www.joesecurity.org/joe-sandbox-cloud
https://www.garykessler.net/library/file_sigs.html?utm_source=tool.lu
https://github.com/secrary/SSMA
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://resources.infosecinstitute.com/2-malware-researchers-handbook-demystifying-pe-file/
https://resources.infosecinstitute.com/2-malware-researchers-handbook-demystifying-pe-file/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/

Which YARA Rules Rule: Basic or Advanced?

33

Christopher S. Culling, csculling1@gmail.com

Roth, F. (2015b, October 17). How to Write Simple but Sound Yara Rules - Part 2.

Retrieved from https://www.bsk-consulting.de/2015/10/17/how-to-write-simple-

but-sound-yara-rules-part-2/

Roth, F. (2016a, April 15). How to Write Simple but Sound Yara Rules - Part 3.

Retrieved from https://www.bsk-consulting.de/2016/04/15/how-to-write-simple-

but-sound-yara-rules-part-3/

Roth, F. (2016b, February). YARA Performance Guidelines. Retrieved from

https://gist.github.com/Neo23x0/e3d4e316d7441d9143c7

Roth, F. (2018, February) yarGen is a generator for YARA rules. Retrieved from

https://github.com/Neo23x0/yarGen/

SANS. (2018, n.d.) SIFT Workstation. Retrieved from https://digital-

forensics.sans.org/community/downloads

Shalev, S. (2017, March 6).

theZoo/malwares/Binaries/EquationGroup/EquationGroup.zip. Retrieved from

https://github.com/ytisf/theZoo/blob/master/malwares/Binaries/EquationGroup/E

quationGroup.zip

Te-k. (2018, May 28). CLI tool to analyze PE files. Retrieved from

https://github.com/Te-k/pe

VirusTotal. (n.d.). Welcome to YARA’s documentation! Retrieved from

https://yara.readthedocs.io/en/v3.7.1/

Wikibooks. (2018, June 25). X86 Disassembly/Windows Executable Files. Retrieved

from

https://en.wikibooks.org/wiki/X86_Disassembly/Windows_Executable_Files#/me

dia/File:RevEngPeSig.JPG

Zeltser, L. (n.d.) REMnux: A Linux Toolkit for Reverse-Engineering and Analyzing

Malware. Retrieved from https://remnux.org

Zetter, K. (2015, February 16). Suite of Sophisticated Nation-State Attack Tools Found

with Connection to Stuxnet. Retrieved from

https://www.wired.com/2015/02/kapersky-discovers-equation-group/

https://www.bsk-consulting.de/2015/10/17/how-to-write-simple-but-sound-yara-rules-part-2/
https://www.bsk-consulting.de/2015/10/17/how-to-write-simple-but-sound-yara-rules-part-2/
https://www.bsk-consulting.de/2016/04/15/how-to-write-simple-but-sound-yara-rules-part-3/
https://www.bsk-consulting.de/2016/04/15/how-to-write-simple-but-sound-yara-rules-part-3/
https://gist.github.com/Neo23x0/e3d4e316d7441d9143c7
https://github.com/Neo23x0/yarGen/
https://digital-forensics.sans.org/community/downloads
https://digital-forensics.sans.org/community/downloads
https://github.com/ytisf/theZoo/blob/master/malwares/Binaries/EquationGroup/EquationGroup.zip
https://github.com/ytisf/theZoo/blob/master/malwares/Binaries/EquationGroup/EquationGroup.zip
https://github.com/Te-k/pe
https://yara.readthedocs.io/en/v3.7.1/
https://en.wikibooks.org/wiki/X86_Disassembly/Windows_Executable_Files%23/media/File:RevEngPeSig.JPG
https://en.wikibooks.org/wiki/X86_Disassembly/Windows_Executable_Files%23/media/File:RevEngPeSig.JPG
https://remnux.org/
https://www.wired.com/2015/02/kapersky-discovers-equation-group/

Which YARA Rules Rule: Basic or Advanced?

34

Christopher S. Culling, csculling1@gmail.com

Appendix A

Simple Static Malware Analyzer Results - Equation Laser

Which YARA Rules Rule: Basic or Advanced?

35

Christopher S. Culling, csculling1@gmail.com

Which YARA Rules Rule: Basic or Advanced?

36

Christopher S. Culling, csculling1@gmail.com

Which YARA Rules Rule: Basic or Advanced?

37

Christopher S. Culling, csculling1@gmail.com

Appendix B

Simple Static Malware Analyzer Results - FannyWorm

Which YARA Rules Rule: Basic or Advanced?

38

Christopher S. Culling, csculling1@gmail.com

Which YARA Rules Rule: Basic or Advanced?

39

Christopher S. Culling, csculling1@gmail.com

Appendix C

Joe Sandbox Cloud - FannyWorm

Which YARA Rules Rule: Basic or Advanced?

40

Christopher S. Culling, csculling1@gmail.com

Which YARA Rules Rule: Basic or Advanced?

41

Christopher S. Culling, csculling1@gmail.com

Which YARA Rules Rule: Basic or Advanced?

42

Christopher S. Culling, csculling1@gmail.com

Which YARA Rules Rule: Basic or Advanced?

43

Christopher S. Culling, csculling1@gmail.com

Which YARA Rules Rule: Basic or Advanced?

44

Christopher S. Culling, csculling1@gmail.com

Which YARA Rules Rule: Basic or Advanced?

45

Christopher S. Culling, csculling1@gmail.com

Which YARA Rules Rule: Basic or Advanced?

46

Christopher S. Culling, csculling1@gmail.com

Which YARA Rules Rule: Basic or Advanced?

47

Christopher S. Culling, csculling1@gmail.com

Which YARA Rules Rule: Basic or Advanced?

48

Christopher S. Culling, csculling1@gmail.com

Which YARA Rules Rule: Basic or Advanced?

49

Christopher S. Culling, csculling1@gmail.com

Which YARA Rules Rule: Basic or Advanced?

50

Christopher S. Culling, csculling1@gmail.com

Which YARA Rules Rule: Basic or Advanced?

51

Christopher S. Culling, csculling1@gmail.com

Which YARA Rules Rule: Basic or Advanced?

52

Christopher S. Culling, csculling1@gmail.com

Which YARA Rules Rule: Basic or Advanced?

53

Christopher S. Culling, csculling1@gmail.com

Which YARA Rules Rule: Basic or Advanced?

54

Christopher S. Culling, csculling1@gmail.com

Which YARA Rules Rule: Basic or Advanced?

55

Christopher S. Culling, csculling1@gmail.com

Which YARA Rules Rule: Basic or Advanced?

56

Christopher S. Culling, csculling1@gmail.com

Which YARA Rules Rule: Basic or Advanced?

57

Christopher S. Culling, csculling1@gmail.com

