Which YARA Rules Rule:
Basic or Advanced?

GIAC (GCIA) Gold Certification and RES 5500

Author: Christopher S. Culling, cscullingl@gmail.com
Advisor: Sally Vandeven

Accepted: July 29, 2018

Abstract

YARA rules, if used effectively, can be a powerful tool in the fight against malware.
However, it appears that the majority of individuals who use YARA write only the most
basic of rules, instead of taking advantage of YARA’s full functionality. Basic YARA
rules, which focus primarily on identifying malware signatures via detection of
predetermined strings within the target file, folder, or process, can be evaded as malware
variants are created. Advanced YARA rules, on the other hand, which often include
signatures as well, also focus on the malware’s behavior and characteristics, such as size
and file type. While it is not uncommon for strings within malware to change, it is much
rarer that its primary behavior will. After analyzing multiple samples of two different
malware strains within the same family, it became clear that using both basic and
advanced YARA rules is the most effective way for users and analysts to implement this
powerful tool. As there are a large number of advanced capabilities contained within
YARA, this paper will focus on easy-to-use, advanced features, including YARA's
Portable Execution (PE) module, to highlight some of the more powerful aspects of
YARA. While it takes more time and effort to learn and utilize advanced YARA rules, in
the long run, this method is a worthwhile investment towards a safer networking
environment.

Which YARA Rules Rule: Basic or Advanced? 2

1. Introduction

YARA is a recursive acronym which, according to its founder, stands for either
Yet Another Recursive Acronym or Yet Another Ridiculous Acronym. It is a tool used to
identify and classify malware through the use of signature-based rules and other target
characteristics that users can run against files, folders, and processes. There are basic
YARA rules, such as searching for a particular text string within a file, and more
advanced YARA rules, such as searching for data at a specific virtual memory address in

a running process. YARA syntax closely resembles the C language (Alvarez, 2018).

1.1. Purpose

While it is possible to find articles and resources which explain basic or advanced
usages of YARA rules, one of the topics that was missing from the literature was a
comparative analysis of the basic and advanced YARA rules against each other. The
literature on YARA also does not address whether or not the extra time it takes to write
advanced rules will be more beneficial in the long run, compared to the efficiency of only
utilizing the basic, easier-to-write rules. To account for this gap, the focus of this research
will be on analyzing this comparison to determine which YARA rules rule - basic or

advanced.

The research question that this paper will ultimately attempt to answer is: When
attempting to identify malware, how much more effective, if at all, is the utilization of
more complex, advanced YARA rules than the use of easier-to-write, basic rules?

1.2. Significance

This research question is worth being answered because it appears, through both
discussions with those who write YARA rules, and reviews of rules posted on the
Internet, that most Y ARA users do not take advantage of its more advanced capabilities.
Instead, they mostly rely on YARA’s more basic features. According to Robert M. Lee,
CEOQ of Dragos, Inc., and SANS Certified Instructor, as a result of “what I’ve seen, folks
I’ve taught, and the YARA rules that get published by vendors [...] not many researchers

take advantage of YARAs extendable nature” (R. Lee, personal correspondence, May 12,

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 3

2017). Additionally, an anonymous YARA superuser provided several reasons to explain

why many YARA users only rely on its basic functions:
1. The basic usage of YARA is good enough.

2. Users don’t care about, or don’t understand, the concept of what I call resilient
rules. Writing rules looking for a combination of unique strings is good, but all it
takes is those unique strings to change and your rule is not going to catch the new
code. This is what I call a low-resilience rule. Instead, where it makes sense, | like
to write rules which are harder for an attacker to evade. This often relies upon the

more advanced features of YARA and is possibly more time consuming to write.

3. The "more advanced" features are newer, possibly buggier, and a little harder to
wrap your brain around. The YARA syntax around strings and how to use them in

conditions is easier for a non-programmer to understand.

4. YARA is only a small piece in the chain when it comes to defense. If you can
use a "less resilient™ rule to catch a piece of malware and unravel the entire kill
chain from there, you can find more resilient ways to track the actor in the future

that doesn't rely solely upon unchanging malware.

5. Lastly, and this is just a counter-point to the arguments above, | find that if you
talk to people privately, they may have a better rule that they don't want to share
publicly. So, people do write really nice rules but are keeping them amongst
trusted peers because it is a more resilient rule (Anonymous, personal

correspondence, May 11, 2017).

Most of the existing literature on this topic does not explore the more advanced
aspects of YARA. This research will show that the utilizing both basic and advanced
YARA features results in better identification of malware. This research will propose that
more YARA users should take the time to learn about these advanced features and
incorporate them into their rules. Additionally, more documentation needs to be produced
by the YARA-using community that details use cases for advanced YARA rules and how

to use them more effectively.

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 4

2. Research Method

The research for this paper was conducted on a fresh installation of Linux Ubuntu
18.04 running in VMWare Workstation 14 Professional. All of the updates, upgrades, and
installations of required components for both Ubuntu and the software used in this

research were made as needed.

2.1. Tools to Aid in Writing and Executing YARA Rules

Malware must first be analyzed to determine its contents and attributes before
YARA rules targeting that specific malware can be created. There are numerous tools
that can be utilized to do this and which also can aid in the writing and execution of
YARA rules. Several of them were used during this research, including the YARA tool
(described in the Introduction), yarGen (Roth, 2018), pe (Te-k, 2018), Simple Static
Malware Analyzer (SSMA) (Khasaia, 2018), and Joe Sandbox Cloud (Joe Security,
2018). Several collections of tools that analysts can use in the examination of malware,
which were not used for this paper but are worth mentioning, are REMnux and the SANS
Investigative Forensics Toolkit (SIFT). REMnux, a “free Linux toolkit for assisting
malware analysts with reverse-engineering malicious software” (Zeltser, n.d.) is an
excellent open-source platform for users who are interested in malware reverse-
engineering and analysis. SIFT is also an excellent open-source collection of incident
response and forensic tools that can be incorporated into REMnux (SANS, 2018). Users
should be sure to update and upgrade the tools in both collections before first use.

While REMnux and SIFT contain a multitude of different tools, and are excellent
resources, starting with YARA, yarGEN, pe, SSMA, and Joe Sandbox Cloud (or another
open-source malware sandbox) can provide plenty of data from which to begin writing
quality YARA rules.

2.1.1. yarGen

yarGen is a YARA rule generator used in this research, which when run against a
file, will output potential malware strings. What separates it from other YARA-related
tools is the large goodware strings and opcode database that comes with it. These features

allow for the distinction between malware strings and strings that can, for the most part,

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 5

be ignored. yarGen then takes its output and generates a YARA rule for the file, and
possibly a super rule when scanning multiple, similar files at the same time (Roth, 2018).
yarGen outputs rules that are sufficient to use as-is. However, to optimize them so that
they are "sufficiently generic" to match more than one sample, users should read the
three-part series entitled, “How to Write Simple but Sound Yara Rules” (Roth, 2015a,
2015b, 2016a).

2.1.2. pe

pe is a tool that delves into the Portable Executable (PE) file, which is found
within several different file types and contains information that allows the Windows
Operating System loader to work with the wrapped executable code (Revers3r, 2018). pe
can extract data from a PE file, search for a string within a PE file, or check to see if
anything in the PE file is out of the ordinary (Te-k, 2018).

2.1.3. Simple Static Malware Analyzer (SSMA)

SSMA is a simple analyzer that provides static malware analysis. One of its many
capabilities is to scan the malware with its comprehensive YARA rules database which
searches for the existence of well-known software packers, cryptographic algorithms and
evasion processes, and looks for Windows functions commonly used by malware
(Khasaia, 2018).

2.1.4. Joe Sandbox Cloud

Joe Sandbox Cloud is a dynamic malware analyzer which “executes files [...] in a
controlled environment and monitors the behavior of applications and the operating
system for suspicious activities” and produces comprehensive reports in multiple formats
(Joe Security, 2018). Appendix C contains the full report of a scan of one of the malware
samples to show the amount of information one of these reports can provide. This report
can be used to create YARA rules, determine firewall rules, and take various other

network defense measures.

2.2. Static Analysis of Malware Samples
The malware samples used for this research consisted of six samples of Equation

Group’s malware strain EquationLaser, and 261 samples of their FannyWorm malware

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 6

strain (Shalev, 2017). Equation Group is thought to have been formed anywhere between
1996 and 2002 and has infected systems in multiple sectors around the world ever since
(GReAT, 2015). EquationLaser malware was last seen in use between 2001 and 2004,
while FannyWorm was on the scene from 2008 to 2011 (Zetter, 2015).

Static analysis of these samples was conducted using yarGen to produce initial
YARA rules. yarGen created an individual rule for each piece of EquationLaser malware
along with one super rule for the group, along with 37 individual rules and one super rule
from the FannyWorm samples. SSMA and pe were then run against each piece of
EquationLaser malware and six randomly-chosen FannyWorm samples to discover the
internal characteristics of each against which basic and advanced YARA rules could be
crafted.

2.3. Dynamic Analysis of Malware Samples

The research then progressed to dynamic analysis of the malware samples by
scanning the six previously analyzed files from each malware strain with Joe Sandbox
Cloud.

The results of the static and dynamic analysis of the malware samples and the
associated analysis of the data generated from the tools used to analyze the malware are

detailed in the following section.

3. Findings and Discussion

Many of the articles reviewed during the research for this paper regarding YARA
rules often rehash the official documentation posted by YARA’s creator, Victor Alvarez.
And even those articles primarily discussed the more basic aspects of YARA.
Additionally, there were no relevant articles in the EBSCOhost research database and
very few scholarly articles in Google Scholar on the topic, most of which only mentioned
the existence of YARA rules. There were, however, a handful of YARA superusers, such
as Florian Roth and Ricardo Dias, who wrote about how to utilize YARA’s more

advanced functions and who described uses of particular features in ways not found in

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 7

Mr. Alvarez's original YARA documentation. Their writings will form the basis for much

of this research paper and future research.

The most current official YARA documentation can be found in HTML
(VirusTotal, n.d.) or PDF format (Alvarez, 2018). It covers YARA installation, how to
write YARA rules, YARA modules (add-on features with advanced functionality), how
to write modules, running YARA from the command line and via Python, and utilizing
the C API to integrate YARA into C/C++ projects.

While the intent of this paper is not to teach users how to use YARA, the concept
of how YARA rules work is necessary to understand the research that was conducted. To
that end, the writing of YARA rules, executing YARA rules, and what would constitute
basic rules and advanced rules will be covered, as it is presented in the official
documentation and by several YARA superusers. For instructions on how to install
YARA, and for a full description of all of YARA’s capabilities, see the official

documentation (Alvarez, 2018).

3.1. Introduction to Writing YARA Rules

Every YARA rule begins with the keyword rule, followed by the name of the
rule. The rule itself is enclosed by curly brackets { }, within which lies the parameters of
the rule. Rules are primarily made up of two sections. The first, which contains specific
strings (text, hexadecimal, or regular expressions), can be omitted if the rule does not
include a string. The second, the condition, which will define what triggers the rule, is a
requirement for all YARA rules. A simple example rule, taken from the official YARA
documentation (Alvarez, 2018) appears as follows:

rule ExampleRule

{
strings:
$my _text string = "text here"
$my_hex_string={ E234 A1 C823FB }

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 8

condition:

$my_text_string or $my_hex_string

If a file that contained either the identified text or the specific hex string had this
rule run against it, it would indicate a match, due to the use of or in the condition. If the
text or hex string were located within a piece of malware, YARA would indicate that it

made a positive match.

Rules can also have comments added to them following C coding comment rules
(Alvarez, 2018):

/*

This is a multi-line comment ...

*/

rule CommentExample // ... and this is single-line comment

3.1.1. Strings
Three types of strings are allowed in YARA rules: hexadecimal, text, and regular
expression (Alvarez, 2018). A basic YARA rule would be one that primarily relied on the

use of strings to identify a piece of malware.

Hexadecimal strings can be used with wild-cards, jumps, and alternatives. An
example of using wild-cards (or placeholders signified by a question mark) in a rule is as

follows:

rule Example_Wildcard

{
strings:

$al = {5532 AB 2?67 }

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 9

condition:
$al

ks

When a user knows the exact number of missing hex characters, wild-cards are
the option to use. However, when the exact number of missing characters is not known,

jumps would be used instead of wild-cards. Jumps follow the pattern of (Alvarez, 2018):
[X-Y]where0<=X<=Y
For example (Alvarez, 2018):
rule JumpExample
{
strings:
$hex_string = { F4 23 [4-6] 62 B4 }
condition:
$hex_string

ky

In this case, either four, five, or six sets of hex characters could be contained
within the [] brackets.

Alternative hex strings resemble regular expressions, such as this example:
rule Example_Hex_String
{
strings:
$hex_string = { AB 23 (62 5? |65 |8C ????) 21}
condition:

$hex_string

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 10

In addition to hex strings, text strings may be used. The simplest use of a text

string would be the following:
rule Example_Text_String
{
strings:
$al = "Missouri"
condition:
$al
}
The following modifiers can appear at the end of a text string (Alvarez, 2018):
e nocase = makes the text string, which is normally case-sensitive, case-insensitive
e wide = searches for text strings encoded with two bytes per character
e ascii = searches for text strings in ascii format (this is the assumed default)
e xor = searches for text strings with a single byte XOR applied
e fullword = only matches text string if delimited by non-alphanumeric characters
An example of the use of some of these modifiers is as follows:
rule ModifierTextExample
{
strings:
$wide_and_nocase_string = "Texas" wide nocase
condition:

$wide_and_nocase_string

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 11

This rule would indicate a positive match if the word “Texas” was encoded with

two bytes per character and if it appeared in any form of upper and lower-case characters.

Regular expressions can also be used as strings and are enclosed in forward
slashes / instead of quotes like the text strings. The specific regular expression syntax
allowed when creating a YARA rule can be found in the official documentation (Alvarez,
2018). While regular expressions provide a wide range of flexibility when creating rules,
they should be used sparingly as they significantly slow down YARA’s evaluation of the
target file. Users should try to use hex strings with wild-cards and jumps if they can be
used instead (Roth, 2016b).

3.1.2. Conditions

The second part of a YARA rule, and the only required component within the
rule, is the condition. Conditions are Boolean expressions that contain the operators and,
or, and not, relational operators such as >= and ==, arithmetic operators, and bitwise
operators, such as >>. Conditions define what will cause the rule to activate on the target

file, folder, or process (Alvarez, 2018).

For example, in the following rule, the condition defines what strings will return a

positive hit on the target:

rule Example_Condition

{
strings:
$stringl = "text1"
$string2 = "text2"
$string3 = "text3"
$string4 = "text4"
condition:
($stringl or $string2) and ($string3 or $string4)
}

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 12

[IP%2)

In this case, if the string “a” or” b”” and the string “c” or “d” are present in the

target, YARA will indicate their presence.

3.1.3. Metadata

In addition to strings and conditions, rules can also contain metadata information.
The only use of the metadata section is to store additional data about the rule and is
indicated by the word meta. Similar to strings, each piece of metadata begins with an
identifying phrase, followed by an equals sign, followed by the information. The
following shows how the metadata section is used (Roth, 2015a):

rule Enfal_Generic
{
meta:
description = "Auto-generated rule - from 3 different files"
author = "YarGen Rule Generator"
reference = "not set"
date = "2015/02/15"
super_rule =1
hash0 = "6d484daba3927fc0744b1bbd7981a56ebef95790"
hashl = "d4071272cc1bf944e3867db299b3f5dce126f82b"
hash2 = "6¢7c8b804cc76e2c208c6e3b6453ch134d01fa4l™

Once the user has defined the strings (based on the analysis of the malware
sample), and has determined the conditions and any optional metadata, he or she is ready

to run the rule(s) against the target.

3.2. Executing YARA Rules
To run YARA against a file, folder, or process, the user would apply the

following command line syntax (obtained via the “yara -h”” command):

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 13

Usage: yara [OPTION]... [NAMESPACE:]RULES_FILE... FILE | DIR | PID
Mandatory arguments to long options are mandatory for short options too.

-t, --tag=TAG print only rules tagged as TAG
-i, --identifier=IDENTIFIER print only rules named IDENTIFIER
--count print only number of matches
--negate print only not satisfied rules (negate)
--print-module-data print module data
--print-tags print tags
--print-meta print metadata
--print-strings print matching strings
--print-string-length print length of matched strings
--print-namespace print rules' namespace
--threads=NUMBER use the specified NUMBER of threads to scan a directory
--max-rules=NUMBER abort scanning after matching a NUMBER of rules
-d VAR=VALUE define external variable
-X MODULE=FILE pass FILE's content as extra data to MODULE
--timeout=SECONDS abort scanning after the given number of SECONDS
--stack-size=5L0TS set maximum stack size (default=16384)
--max-strings-per-rule=NUMBER set maximum number of strings per rule (default=10000)
--recursive recursively search directories
--fast-scan fast matching mode
--no-warnings disable warnings
--fail-on-warnings fail on warnings
--version show version information
--help show this help and exit

The scan uses rules that can be found in source code or be compiled. One or
multiple YARA rule files can be run against the target. More in-depth details and
examples regarding how to execute YARA rules are found in the official YARA

documentation (Alvarez, 2018).

3.3. Basic YARA Rules
As previously stated, basic YARA rules search for predefined strings within the
target file, folder, or process. These rules are primarily concerned with the detection of a

signature within the target that matches the assigned string or strings.
An example of a basic rule would be the following (AlienVault Labs, 2017):
rule LIGHTDART _APT1
{
meta:
author = "AlienVault Labs"

info = "CommentCrew-threat-apt1"

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 14

strings:

$s1 = "ret.log" wide ascii

$s2 = "Microsoft Internet Explorer 6.0" wide ascii

$s3 = "szURL Fail" wide ascii

$s4 = "szURL Successfully" wide ascii

$s5 = "%s&sdate=%041d-%021d-%02Id" wide ascii
condition:

all of them

}

An example of a basic rule with a more complex condition is (AlienVault Labs,
2017):

rule CCREWBACK1
{
meta:
author = "AlienVault Labs"
info = "CommentCrew-threat-apt1"
strings:
$a = "postvalue" wide ascii
$b = "postdata” wide ascii
$c = "postfile" wide ascii
$d = "hostname" wide ascii
$e = "clientkey" wide ascii
$f = "start Cmd Failure!" wide ascii

$g = "sleep:" wide ascii

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 15

$h = "downloadcopy:" wide ascii
$i = "download:" wide ascii
$j = "geturl:" wide ascii
$k ="1.234.1.68" wide ascii
condition:
4 of ($a,$b,$c,$d,$e) or $f or 3 of ($g,$h,$i,$j) or $k
}

While there are many useful rules in this ruleset (70 rules in total targeting APT1

malware), none of them move beyond this paper’s definition of a basic rule.

3.4. Advanced YARA Rules

Advanced YARA rules, as opposed to basic rules, are geared more toward the
behavior or characteristics of the target, versus a string-based signature. They are
designed to be more "resilient,” making it harder for an attacker to evade them

(Anonymous, personal correspondence, May 11, 2017).

While many advanced rules may still search for strings, they will contain
additional features in the condition section. As previously mentioned, YARA rules do not
require any strings to be considered a valid rule and can run on condition statements
alone. However, if the user does decide to create strings, which strings they use, the
relative importance applied to each one, and how they apply conditions to them can also

elevate a rule from a basic to an advanced level (Roth, 2015a, 2015b, 2016a).

3.4.1. Magic Number

One condition variable that can elevate a rule from basic to advanced is the magic
number variable. The magic number is used by applications and operating systems to
determine the type of file with which it is working and is located at the beginning of the
file. For example, the hex value 4D 5A at the beginning of a file indicates a
Windows/DOS executable file. The values 4D 5A in hex equate to the characters MZ, or
the initials of Mark Zbikowski, the individual who designed the DOS executable file

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 16

format. Additionally, the hex values 25 50 44 46 at the beginning of a file would indicate
that the file is a PDF. Therefore, if the file type is known when the user is crafting the
YARA rule, the addition of the magic number variable in the condition will allow the rule
to ignore those files which don't match, speeding up the search process. There are many
locations on the Internet where lists of file types and their matching hex signatures can be

found, with one very comprehensive list that is maintained by Gary Kessler (2018).

3.4.2. Locating Data at a Given Offset or Virtual Address
Y ARA uses the following functions to search for a particular string or value at a

given offset within a file or virtual memory address:
int8(<offset or virtual address>)
int16(<offset or virtual address>)
int32(<offset or virtual address>)
uint8(<offset or virtual address>)
uint16(<offset or virtual address>)
uint32(<offset or virtual address>)
int8be(<offset or virtual address>)
intl6be(<offset or virtual address>)
int32be(<offset or virtual address>)
uint8be(<offset or virtual address>)
uintl6be(<offset or virtual address>)
uint32be(<offset or virtual address>)

The official YARA documentation describes this functionality as:

The intXX functions read 8, 16, and 32 bits signed integers from <offset or
virtual address>, while functions uintXX read unsigned integers. Both 16
and 32-bit integers are considered to be little-endian. If you want to read a

big-endian integer use the corresponding function ending in be. The

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 17

parameter can be any expression returning an unsigned integer, including

the return value of one the uintXX functions itself (Alvarez, 2018).

As some analysts may have no problem understanding how to use this feature,
many may not. To that end, the following use case is provided to show how this

powerful function may be effectively utilized.

If the malware that needed to be detected was a Windows executable, the MZ file
signature (indicating a Windows/DOS file) and PE file signature (indicating an
executable file) hex values would both need to be located and matched. A YARA rule

written to accomplish this would appear as such (Alvarez, 2018):

rule IsPE

{

condition:
/I MZ signature at offset 0 and ...

uint16(0) == O0x5A4D and
/I ... PE signature at offset stored in MZ header at 0x3C

uint32(uint32(0x3C)) == 0x00004550

}

As the first comment after the condition statement above indicates, the MZ file
signature ((which is a two-byte, unsigned integer (uint16) and little-endian)) should be
located at file offset O and will be written in reverse order in the rule due to its endianness
(5A4D versus 4D5A, or ZM versus MZ). The example graphic below, which puts this
process into perspective (Wikibooks, 2018), shows that this is an MZ file (note the 4D 5A
located at offset 0). Next, the hex for the PE file signature ((which is a four-byte,
unsigned integer (uint32) and little-endian)), when translated reads PE/0O/O (or O0EP, as
shown in the example above due to its endianness). The uint32(0x3C) address is first
located in the MZ header and contains the hex value D8. If this is an actual PE file,
location 0xD8 should contain the PE file indicator 0x50450000.

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 18
00000000 4D SA 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 MZ..............
00000010 BS 00 00 00 00 00 00 00 40 00 00 00 OO0 OO0 00 0O @553558
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..o
00000030 00 00 00 00 00 00 OO0 00 00 00 00 nn(ggﬁoo 00 00 ...
00000040 OE 1F BA OE 00 B4 09 CD 21 B8 01 4C &€F 54 68 Soanans | . .L.ITh
00000050 69 73 20 70 72 6F 67 72 61 6D 20 63 61 6ENSE 6F is program canno
00000060 74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 20 t be run in DOS
00000070 6D 6F 64 65 2E 0D OD 04 24 00 00 00 00 00 0O - ———
00000080 26 C3 8E 85 62 A2 E0 D6 62 A2 EO0 D6 62 A2 EO ..b...b..
00000090 E1 BE EE Dé 6F 42 E0 D6 62 A2 E0 D6 6D A2 EO _.b...m..
00000040 00 BD F3 D6 6D A2 EO D6 62 A2 E1 D6 54 A3 EO ..b...Z..
000000B0 8A BD EB D6 G4 A2 EO D6 84 BD EA D6 47 A2 EO D6 ... 4. G..
000000CO DA A4 E6 D6 63 A2 EO D6 52 69 63 68 62 A2 EO _Richb. .
000000D0 00 00 00 00 00 OO0 OO0 OO0 S0 45 00 00 4C 01 03 00 ¢ (PE) .L.

As we can see from the above graphic, the hex value 0xD8 located at offset
uint32(0x3C) does, in fact, point to the hex value for a PE file. Adding this short but
effective condition to all YARA rules that are designed to detect Windows executable
files can increase its effectiveness by cutting down on false positives and speeding up the

detection process.

3.4.3. Filesize

Another advanced condition variable is the filesize variable. This variable can
only be used with targets that are files and that can be appended with KB or MB which
will multiply the number by 1024 or 2720, respectively (Alvarez, 2018). An example of

the filesize variable follows:
rule Example_Filesize
{
condition:
filesize < = 300KB

}

In the above example, this rule will detect any file that is less than or equal to
300KB. As many pieces of malware are often quite small, defining the size of the file that
is being detected can greatly increase the speed at which YARA performs its search, as

the search pool has just been reduced.

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 19

3.4.4. Portable Executable (PE) Module

YARA has external modules that provide additional functionality on top of the
base program. These include the PE, Executable and Linkable Format (ELF), Cuckoo,
Magic, Hash, Math, dotnet, and Time Modules. Due to the length constraints of this
research paper, only the PE module will be explored, but it is recommended to study the

other modules and their uses from the official YARA documentation (Alvarez, 2018).

The PE module is an excellent place to start creating advanced YARA rules as the
various tools discussed in this paper can yield a vast amount of information found in the
PE header against which to write YARA rules. As Alvarez states, “The PE module allows
you to create more fine-grained rules for PE files by using attributes and features of the
PE file format. This module exposes most of the fields present in a PE header and
provides functions which can be used to write more expressive and targeted rules”
(Alvarez, 2018). The vast amount of condition statements that can be crafted into YARA
rules regarding fields and characteristics of a PE file that stem from the PE module makes
this resource an important one to learn and incorporate into advanced YARA rules.

To use the PE module in a YARA rule, or set of rules, the user must first activate
the module by adding the command import “pe” to the start of the rule file. The
arguments used with the PE module all begin with pe and are found within the condition
section of the rule.

An example of the PE module usage in a rule follows (Alvarez, 2018):
import "pe"
rule single_section
{
condition:
pe.number_of sections ==

¥

rule control_panel_applet

{

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 20

condition:

pe.exports("CPIApplet")
}

rule is_dll

{

condition:

pe.characteristics & pe.DLL

}

There are PE module arguments whereby the data for the argument can be easily
collected using tools such as SSMA and pe. One argument that will play a prominent role
in the findings component of this research is pe.imphash, which refers to the PE file’s
import hash. As found in the FireEye security blog, an unnamed writer from the company
Mandiant states “Imports are the functions that a piece of software calls from other files
(typically various DLLs that provide functionality to the Windows operating system)
(Mandiant, 2014). Additionally, they go on to explain that the imphash can be used to

identify malware samples that are related (Mandiant, 2014).

Another argument, pe.entry_point, refers to the address where the PE loader starts
to run the executable portion of the file (Revers3r, 2018). This is a common location for
software packers to begin their code. Both the entry point and imphash values can be
found using the info argument when running the tool pe. If the number of imports or
exports in the PE is known, pe.number_of _imports or pe.number_of exports can be used.
The official YARA documentation contains nine pages of PE arguments that can be used
in the condition statement of a rule, and the PE module is a good place to start learning
about YARA module usage and capabilities.

3.4.5. YARA Performance Guidelines
The guidance provided in “YARA Performance Guidelines” (Roth, 2016b),
covers ways to craft YARA rules to achieve the highest level of performance from them.

This section has already touched upon several of the topics. Some of the additional

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 21

subjects Roth covers are global rules, the most efficient ways to write strings, and
condition statements which use a newer YARA feature called short-circuit evaluation,
which can potentially improve the execution time of a YARA rule depending on the order

in which the condition statement is written.

3.4.6. Advanced YARA Rules Use Case

In Ricardo Dias’ three-part series, “Unleashing YARA” (2016a, 2016b, 2016c¢),
he discusses the usefulness of YARA in an Incident Response Team and walks the reader
through a very detailed, advanced YARA use case. This is highly recommended reading

for any user who is serious about improving their YARA rule writing abilities.

3.5. Static Analysis Findings
3.5.1. yarGen Findings

For the initial static malware analysis, yarGen was run against the six
EquationLaser malware samples using the [-z 0] option to see both malware and
goodware strings. After removing the goodware strings, the generated YARA rules for all
six samples were the same, including the super rule for the set. What follows is the super
rule, which was edited to remove non-essential information, the goodware strings, and
the condition, which previously contained “and 8 of them” (referring to the strings) and

was changed to “and all of them” as was found in the individual rules:
rule EquationLaser {
meta:
description = "EquationLaser
author = "yarGen Rule Generator"
reference = "https://github.com/Neo23x0/yarGen"
date = "2018-06-30"

hashl =
"5e97f0cc3407c56ee5e6233h7573bd6eb05ffe22949bd12c1d1a26b2ab21d827"

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 22

hash2 =
"58e78c653h2a92469963759fc88029c4badc7138e7654005dd1c5904fae163d5"

hash3 =
"a3b324cefbf81d3f1dbd573e64c453ch4d8a53ac54687d0c4caal0dlcbc409a51"

hash4 =
"c5642a2135fd315e75418af20f92117bba50b17682021e7448019e043aaledc9™

hash5 =
"fecfe25aaecec3911fee183ff0988ea9045a30d6c1620ed57h1ad134d86dc2ee3"

hash6 =
"ec2a717739947d3512513889bbecd9a0dac3fh65f8e171f8a0835abe8c1537e3"

strings:
$s1 = "lIsasrv32.dll and Isass.exe" fullword wide
$s2 = "lIsasrv32.dll" fullword ascii
$s3 = "Failed to get Windows version" fullword ascii
$s4 = "\\%s\\mailslot\\%s" fullword ascii
$s5 = "%d-%d-%d %d:%d:%d Z" fullword ascii
$s6 = ":#:/:E:J:\\:f:" fullword ascii
condition:
uint16(0) == Ox5a4d and filesize < 400KB and pe.imphash() ==
"ee845¢2ebf05004bb904724010b3d898" and all of them

¥

When yarGen was next run against the 261 FannyWorm samples, 37 individual
rules were generated along with one super rule. Of the individual rules, 22 were unique,
one had five matches, three had two matches, and one had four matches. The super rule,

which follows, was edited in the same manner as the previous rule:

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 23

rule FannyWorm {

meta:
author = "yarGen Rule Generator"
reference = "https://github.com/Neo23x0/yarGen"
date = "2018-06-30"
hashl - hash 261
description = "FannyWorm”

strings:
$x1 = "c:\\windows\\system32\\kernel32.dll" fullword ascii
$s2 = "\\shelldoc.dll" fullword ascii
$s3 = "\\system32\\win32k.sys" fullword wide
$s4 = "dll_installer.dll" fullword ascii
$s5 = "32.exe" fullword ascii
$s6 = "Global\\RPCMutex" fullword ascii
$s7 = "System\\CurrentControlSet\\Services\\PartMgr\\Enum" fullword ascii
$s8 = "x:\\fanny.bmp™ fullword ascii
$s9 = "d:\\fanny.bmp™ fullword ascii
$s10 ="Q:__?__.Ink" fullword ascii
$s11 = "='=2=:=d=" fullword ascii /* hex encoded string '-' */
$s12 = "fseek(SEEK_SET) failed" fullword ascii
$s13 = "file size = %d bytes" fullword ascii
$s14 = "4%5F5J5N5R5V52575b5f5)5n5r5v5z5~5" fullword ascii
$s15 = "Software\\Microsoft\\MSNetMng" fullword ascii

condition:

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 24

uint16(0) == Ox5a4d and filesize < 500KB and pe.imphash() ==

"1f5e76572fad36553733428ca3571f53" and all of them

ks

Some observations about the yarGen results:

3.5.2.

1. yarGen identified and added the MZ file signature (uint16(0) == Ox5a4d) and

filesize to each malware sample, reinforcing the importance of using those

conditions when writing rules.

2. Each set of malware samples, regardless of whether or not the individual rules
contained the same strings or not, had the same PE import hash (pe.imphash).

This indicates that the behavior of each file was the same, regardless of the file’s
overall hash value or the individual strings which were identified for it. A YARA
rule containing only that condition should provide a positive match every time on

a piece of malware from that particular strain.

3. Removing the pe.imphash statement from the condition did not change the
overall results in that each super rule positively identified every malware sample
in each set as being malware. However, because each sample was able to be
analyzed prior to running YARA rules against it, the advantage fell to the
researcher. Future variants of either of these malware strains may have different
identifying strings, which would not be caught by the strings used in this research.
However, because the PE import hash remained constant, that condition alone

would more than likely to catch future variants.

SSMA Findings

The SSMA scans for all six EquationLaser and six randomly selected

FannyWorm malware samples were identical within each group. Examples of the scan

results are found in Appendices A and B. The FannyWorm sample hashes were as

follows:

f4bff0768e2e548aad03a51b00077¢30c1865¢54385b060ed8f4325812dal3aa

d3blea2efohf92aflc15f8a0426a73fhecd3cef2f35695d316d41991e5116¢3d

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 25

81d3f13409fb76f973fdb090b945eca7b2cdealbe5ee0d7bae70ach6bc90e5¢cl
3ee093bad872dc47d28b2437cc5fa404f69209339cc75e0d172b7fd38d324410
e6a54eedfdfdd2edd9c86ae211a37f7b7742bb573b4ech523e56006291aa2b50
€9e130eec84985f18e6f5c69a222e575acd7976f804fh224a622e34aa93bd495

The SSMA results for EquationLaser pointed out a suspicious PE file .data
section size, two PE file sections (.data and Shared) with either very high or very low
entropy numbers (indicating compression or encryption), a PE file section suspiciously
named Shared, and the presence of four bytes of overlay data, or extra data often
associated with malware. SSMA then lists a number of Windows functions commonly
used by malware and is followed by positive matches using its internal YARA rule
collection. SSMA’s YARA rules were positive for the existence of well-known malware,
software packers, cryptographic algorithms, and anti-debug/anti-virtualization processes

within the malware samples.

The SSMA results for FannyWorm contained less information than for
EquationLaser. However, both sets of malware almost had the same positive hits from the
YARA rule scans, which is a strong indication that they both belong to the same overall

malware family.

One point to highlight from the SSMA findings is that SSMA uses a YARA rules
database that is not designed to discover specific strains of malware but instead is
designed to identify typical characteristics of malware, such as the presence of software

packers and cryptographic algorithms.

3.5.3. pe Findings

The following graphic shows the findings of a pe scan on one of the
EquationLaser samples. The usage, as shown at the top of the below figure, is easy to use.
For this research, the arguments check, search, checksize, and info were used. While it
shows similar data as SSMA, one new piece of information that it provides is the PE file
entrypoint when using the info argument. The second figure below shows the beginning

of the Imports section, which contains information that is useful for the PE Module, and

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 26

the third figure shows the six files that every EquationLaser malware sample exported

during execution.

csculling@ubuntu:~$ pe -h
usage: pe [-h] {shell,check,dump,search,info,checksize} ...

positional arguments:
{shell,check,dump,search,info,checksize}
Plugins
shell Launch ipython shell to analyze the PE file
check Check for stuff in the file
dump Dump resource or section of the file
search Search for a string in a PE file
info Extract info from the PE file
checksize Check size of the PE file

optional arguments:
-h, --help show this help message and exit
csculling@ubuntu:~$ pe check /home/csculling/Desktop/EquationLaser/EquationLaser_ 8E2CO6B52F530C9F9B5C2C743A5BB28A
Running checks on fhome/csculling/Desktop/EquationLaser/EquationLaser_BE2CO6B52F530CIFIB5C2C743A5BB28A:
[+] Abnormal section names: Shared
[+] Suspicious entropy in the following sections:
- .data - 7.610638
- Shared - ©.000000
[+] 4 extra bytes in the file
[+] PeID packer: Armadillovixxv2xx
csculling@ubuntu:~$ pe search Shared [home/csculling/Desktop/EquationLaser/EquationLaser_8E2CO6B52F530C9F9B5C2C743A5BB28A
Position in the file : @x27@
csculling@ubuntu:~$ pe checksize /home/csculling/Desktop/EquationLaser/EquationLaser_8E2CP6B52F530C9F9B5C2C743A5BB28A
VirtSize VirtAddr RawSize RawAddr Entropy md5
0x1agbe 0x1000 0x400 0x1aaf0 6.5792 542606a0ac9bc@c21fb965438921fceb
0x185f x1c000 0x1ae00 0x1a00 .3319 €595146db5a7811cd@ba2d4dcc2264e2

) =

0x4bfb8 e 0x1c800 0x1800 7

0x118 0x6a000 0Ox1e000 0x200 0.0000 bf619eacfcdf3f68d496ea9344137e8b
2
5

.6106 4356caba9211586296347c65c32cc533

0x418 0x6b060B Bx1e200 Ox600
.reloc 0x1c56 0x6c000 0x1e800 0x1eB0

.5508 fOddc37fff16a7b42285f672ee79%e87
. 7657 6abbbb5d83042ccdddc319¢c9771351d7

4 bytes of extra data (132612 while it should be 132608)

csculling@ubuntu:~$ pe info /home/csculling/Desktop/EquationLaser/EquationLaser_8E2C06B52F530C9F9B5C2CT43A5BB28A

Metadata
Be2cB6b52f530c9f9b5c2c743a5bb28a
8edeeb4cccf4bb7f7243565fd3ac829baeB890ae8
a3b324cefbf81d3f1dbd573e64c453cb4d8a53ac54687d0c4caaddlcbc489a51
ee845c2ebf05004bb904724010b3d898
132612 bytes
PE32 executable (DLL) (GUI) Intel 80386, for MS Windows

DLL File!

Compile Time: 2004-18-18 12:24:05 (UTC - 8x4173B5ES5)

Entry point: 0x1001b801 (section .text)

Sections

Name virtsize virtAddr RawSize RawAddr md5

Ltext 0x1a8be ex1000 0x400 0x1aa00 o 542606a0ac9bc@c21fb965438921fceb
.rdata 0x185f 0x1c000 Ox1aeBO 0x1a00 o €595146db5a7811cd@ba2d4dcc2264e2
.data Ox4bfb8 e 0x1c800 0x1800 o 4356caba®211586296347c65c32cc533
Shared 0x118 0x1e000 0x200 5 bf619eacOcdf3f68d496ea9344137e8b
.rsrc 0x418 > 0x1e200 Ox600 o foddc37fff16a7b42285T672ee799e87
.reloc 0x1c56 0x6c000 Ox1e800 0Oxledo o 6abbbb5d83042ccdddc319¢c9771351d7

Christopher S. Culling, cscullingl @gmail.com

Imports

Ws2_32.d11

Ox1001c334
O@x1001c338
0x1001c33c
Ox1001c340
Ox1001c344
Ox1001c348
Ox1001c34c
0x1001c350
0x1001c354
Ox1001c358
Ox1001c35c
Ox1001c360
0x1001c364
0x1001c368
Ox1001c36¢C
Ox1001c370
Ox1001c374

KERMEL32.d1l1l

0x1001co74
Ox1001cO78
Ox1001cOTc
Ox1001co80
0x1001co84
0x1001co088
Ox1001cO8cC
Ox1001co90
Ox1001co94
0x1001co98
0x1001cO9c
Ox1001cOad
Ox1001cBad

Which YARA Rules Rule: Basic or Advanced?

WSACleanup
gethostname
gethostbyname
closesocket
sendto

recv
recvfrom
WSAStartup
ioctlsocket
setsockopt
select

__WSAFDIsSet

getsockopt
WSAGetLastError
socket

bind
getsockname

SetThreadPriority
GetCurrentThread
CloseHandle
DeviceloControl
SleepEx

ResumeThread
TerminateThread
WaitForMultipleObjects
GetVersion
ReleaseSemaphore
InterlockedDecrement
InterlockedIncrement
CreateFileA

27

0x10003154 7a73957838_2Q@YAXXZ 1
0x10003154 7aBABB4QEYAXKZ 2
0x10003154 7b823838_9839QAYAXXZ 3
0x10003154 ?e747383_94Q@YAXXZ 4
0x10003154 7eB3834QEYAXKZ 5
0x10003154 72929348 82TARYAXXZ 6

Resources:

Id Name Size Lang Sublang Type MD5

16-1-1033 None 960 B LANG ENGLISH SUBLANG_ENGLISH US data 8481356adacdd6195bcabB9232212efc

3.6. Dynamic Analysis Findings

3.6.1. Joe Sandbox Cloud Findings
While an analyst can obtain a lot of useful information by performing a static
analysis of a piece of malware, more data may be found when they dynamically analyze

the malware by executing it in a contained environment.

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 28

The results of the analysis performed by Joe Sandbox Cloud were quite detailed.
The reports revealed many different malware characteristics from which quality YARA
rules could be generated. For example, they list files that the malware may drop onto the
target computer which can then be separately analyzed to create more detailed, granular
YARA rules. Additionally, the reports reveal the characteristics of the malware while it is
executing, providing more points of reference from which to create advanced YARA
rules than static malware analysis alone can provide. A report of the analysis conducted
on one of the FannyWorm malware samples can be found in Appendix C. Each set of
malware that was run through the Sandbox produced mostly similar results. It is assumed
that variations in results between the malware in each strain occurred because the
malware was only run once and only for several minutes. Additionally, the malware
contained malware analysis system evasion processes, anti-virus detection, and other
protections, which could cause each malware sample to behave differently in the

Sandbox, even if all of them essentially perform the same function.

While the results of the Joe Sandbox Cloud analysis of the 12 pieces of malware
ultimately was not used to inform the final recommendations of this research, they do
play a crucial part in providing information above and beyond what any static malware
analysis could provide. For example, one Joe Sandbox report stated that the malware
sample dropped PE files which had not been started and that the Sandbox should also run

those files for analysis.

The amount of information that dynamic malware analysis provides that can be
used in writing advanced YARA rules should not be overlooked and learning how to

perform malware analysis should be part of any serious YARA rule-user’s skillset.

4. Recommendations and Implications

Upon beginning this research, the question - which YARA rules were more
effective, basic or advanced - appeared to be an either/or proposition. However, as it
turns out, the entire spectrum of YARA rules are needed to ensure complete coverage

against malware threats.

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 29

4.1. Recommendations for Use in the Field

Basic YARA rules can be easily assembled based on the first identified piece of
malware in a matter of minutes-- and they should be, in order to quickly deploy them into
the ever-growing, various network defense components that accept YARA rules as one of
their Indicator of Compromise (I0C) inputs (such as Tanium and Nessus). If they are not
initially written in a manner with will limit false positives, they should eventually be
updated accordingly. Guidance for doing this can be found in Florian Roth’s “How to
Write Simple but Sound YARA Rules” series (2015a, 2015b, 2016a).

However, as the research has shown, the strings that basic YARA rules rely upon
can change, making the current, basic YARA rules ineffective. To counter this, further
analysis of the malware samples must be taken to understand their behavior and
characteristics, which are less likely to change compared to their string signatures. Using
the magic number and filesize parameters in every YARA rule written will provide an
immediate advantage as those are variables that are unlikely to change over time. While
strings may change, a malware’s core behavior should remain consistent. As the PE file
contains the “brains” of the executable, and as the research has shown that it remains
remarkably consistent within individual malware strains, utilizing YARA’s PE Module is
an excellent, advanced usage of YARA. Breaking down the PE file with various tools
such as SSMA, pe, and Joe Sandbox Cloud should yield a multitude of different attributes
from which to craft advanced YARA rules.

Once more advanced, “resilient” rules are created for a malware strain, the
chances of it slipping through a network’s defenses are lessened. And, as previously
stated, YARA rules should also be tuned to perform most effectively (Roth, 2016b).

Lastly, YARA can be used proactively to scan the network to look for files that
contain well-known software packers, cryptographic algorithms, and anti-debug/anti-
virtualization techniques that malware may use to hide from discovery, as demonstrated
by SSMA.

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 30

4.2. Implications for Future Research

Developing a reference that contains multiple use cases involving all levels of
YARA rules would be the most beneficial future YARA rule research. Robert M. Lee,
who teaches the use of YARA rules in his SANS courses, states, “There’s a lot of
functionality that folks aren’t aware of and many ways to use it that aren’t clearly
documented or explored” (R. Lee, personal correspondence, May 12, 2017). While the
official documentation explains how to use YARA, only a handful of YARA superusers
have shown how to use YARA rules in specific instances or how to take true advantage
of its advanced features. One document or site which captures use cases or YARA’s
advanced features would be most useful, allowing researchers or analysts to determine

which types of YARA rules would work best in their situation.

Another worthwhile subject for future research into YARA rules would include
the development of best practices and techniques to employ YARA rules in threat
hunting situations, as suggested by Robert M. Lee (R. Lee, personal communication, May
7,2017). While YARA rules were initially developed mainly for malware classification
and incident handling, they are adaptable enough to be used as one more tool in a red

team’s arsenal.

Qualitative research that employs surveys to discover how the Y ARA-using
community actually uses the rules would be another informative research topic, allowing

for the assessment of gaps which could be explored in further research.

Documenting what tools exist that would benefit a malware researcher throughout
the entire YARA rule-creation process and ranking them based on their effectiveness via
comparative demonstrations and analysis, would also be useful to the YARA-using

community.

Finally, Dr. Johannes Ullrich, SANS Senior Instructor (J. Ullrich, personal
communication, March 5, 2018), suggested a worthwhile subject to explore would be the
use of YARA rules to detect malware utilizing obfuscation techniques. This is an
especially important area for research as malware is increasingly becoming more and

more sophisticated in its makeup.

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 31

5. Conclusion

More often than not, analysts who utilize YARA rules in their discovery and
classification of malware resort to using the most basic features and functionality of
YARA. This conclusion led to this paper’s research question: When attempting to
identify malware, how much more effective, if at all, is the utilization of more complex,

advanced YARA rules than the use of easier-to-write, basic rules?

According to the research conducted, the entire range of YARA rules, from basic
to advanced, have their part to play when searching for malware, and every level of rule
has value to add. Initially, developing basic rules to catch the first wave of a new
malware strain might be all that’s needed. The ease and speed with which these rules can
be created will allow network defenders to quickly add an additional layer of detection
and protection to their networks. However, it should be emphasized that as malware
evolves, and as different variants are created, they may not continue to be detected by
YARA'’s basic rules. In this case, the need to develop the skills to utilize YARA’s more
advanced functionality by searching for characteristics of behavior versus string matches

would be a worthwhile endeavor.

For a comprehensive list of YARA rules, tools, services, people, and much more,

please see “A curated list of awesome Y ARA rules, tools, and people” (InQuest, 2018).

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 32

References

AlienVault Labs. (2017, January 21). rules/malware/APT_APT1.yar. Retrieved from
https://github.com/Yara-Rules/rules/blob/master/malware/APT _APT1.yar

Alvarez, V. (2018, June 19). yara Documentation, Release 3.7.0. Retrieved from
https://media.readthedocs.org/pdf/yara/latest/yara.pdf

Dias, R. (20164, February 10). Unleashing YARA - Part 1. Retrieved from
https://countuponsecurity.com/2016/02/10/unleashing-yara-part-1/

Dias, R. (2016b, February 18). Unleashing YARA - Part 2. Retrieved from
https://countuponsecurity.com/2016/02/18/unleashing-yara-part-2/

Dias, R. (2016c, March 9). Unleashing YARA - Part 3. Retrieved from
https://countuponsecurity.com/tag/malware-analysis/

GReAT. (2015, February 16). Equation: The Death Star of Malware Galaxy. Retrieved

from https://securelist.com/equation-the-death-star-of-malware-galaxy/68750/

InQuest. (2018, June 13). A curated list of awesome YARA rules, tools, and people.
Retrieved from https://github.com/InQuest/awesome-yara#rules
Joe Security. (2018, n.d.) Joe Sandbox Cloud. Retrieved from

https://www.joesecurity.org/joe-sandbox-cloud

Kessler, G. (2018, February 23) File Signatures Table. Retrieved from
https://www.garykessler.net/library/file_sigs.html?utm_source=tool.lu

Khasaia, L. (2018, April 1). SSMA - Simple Static Malware Analyzer. Retrieved from
https://github.com/secrary/SSMA

Mandiant. (2014, January 23). Tracking Malware with Import Hashing. Retrieved from

https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-

hashing.html
Revers3r. (2018). Malware Researcher’s Handbook (Demystifying PE File). Retrieved

from https://resources.infosecinstitute.com/2-malware-researchers-handbook-

demystifying-pe-file/
Roth, F. (2015a, February 16). How to Write Simple but Sound Yara Rules. Retrieved

from https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/

Christopher S. Culling, cscullingl @gmail.com

https://github.com/Yara-Rules/rules/blob/master/malware/APT_APT1.yar
https://media.readthedocs.org/pdf/yara/latest/yara.pdf
https://countuponsecurity.com/2016/02/10/unleashing-yara-part-1/
https://countuponsecurity.com/2016/02/18/unleashing-yara-part-2/
https://countuponsecurity.com/tag/malware-analysis/
https://securelist.com/equation-the-death-star-of-malware-galaxy/68750/
https://github.com/InQuest/awesome-yara%23rules
https://www.joesecurity.org/joe-sandbox-cloud
https://www.garykessler.net/library/file_sigs.html?utm_source=tool.lu
https://github.com/secrary/SSMA
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://resources.infosecinstitute.com/2-malware-researchers-handbook-demystifying-pe-file/
https://resources.infosecinstitute.com/2-malware-researchers-handbook-demystifying-pe-file/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/

Which YARA Rules Rule: Basic or Advanced? 33

Roth, F. (2015b, October 17). How to Write Simple but Sound Yara Rules - Part 2.
Retrieved from https://www.bsk-consulting.de/2015/10/17/how-to-write-simple-

but-sound-yara-rules-part-2/
Roth, F. (2016a, April 15). How to Write Simple but Sound Yara Rules - Part 3.
Retrieved from https://www.bsk-consulting.de/2016/04/15/how-to-write-simple-

but-sound-yara-rules-part-3/

Roth, F. (2016b, February). YARA Performance Guidelines. Retrieved from
https://gist.github.com/Neo23x0/e3d4e316d7441d9143c7

Roth, F. (2018, February) yarGen is a generator for YARA rules. Retrieved from
https://github.com/Neo23x0/yarGen/

SANS. (2018, n.d.) SIFT Workstation. Retrieved from https://digital-

forensics.sans.org/community/downloads
Shalev, S. (2017, March 6).
theZoo/malwares/Binaries/EquationGroup/EquationGroup.zip. Retrieved from

https://qgithub.com/ytisf/theZoo/blob/master/malwares/Binaries/EquationGroup/E

quationGroup.zip

Te-k. (2018, May 28). CLI tool to analyze PE files. Retrieved from
https://github.com/Te-k/pe

VirusTotal. (n.d.). Welcome to YARA's documentation! Retrieved from

https://yara.readthedocs.io/en/v3.7.1/
Wikibooks. (2018, June 25). X86 Disassembly/Windows Executable Files. Retrieved

from
https://en.wikibooks.org/wiki/X86_Disassembly/Windows Executable Files#/me
dia/File:RevEngPeSig.JPG

Zeltser, L. (n.d.) REMnux: A Linux Toolkit for Reverse-Engineering and Analyzing

Malware. Retrieved from https://remnux.org
Zetter, K. (2015, February 16). Suite of Sophisticated Nation-State Attack Tools Found

with Connection to Stuxnet. Retrieved from
https://www.wired.com/2015/02/kapersky-discovers-equation-group/

Christopher S. Culling, cscullingl @gmail.com

https://www.bsk-consulting.de/2015/10/17/how-to-write-simple-but-sound-yara-rules-part-2/
https://www.bsk-consulting.de/2015/10/17/how-to-write-simple-but-sound-yara-rules-part-2/
https://www.bsk-consulting.de/2016/04/15/how-to-write-simple-but-sound-yara-rules-part-3/
https://www.bsk-consulting.de/2016/04/15/how-to-write-simple-but-sound-yara-rules-part-3/
https://gist.github.com/Neo23x0/e3d4e316d7441d9143c7
https://github.com/Neo23x0/yarGen/
https://digital-forensics.sans.org/community/downloads
https://digital-forensics.sans.org/community/downloads
https://github.com/ytisf/theZoo/blob/master/malwares/Binaries/EquationGroup/EquationGroup.zip
https://github.com/ytisf/theZoo/blob/master/malwares/Binaries/EquationGroup/EquationGroup.zip
https://github.com/Te-k/pe
https://yara.readthedocs.io/en/v3.7.1/
https://en.wikibooks.org/wiki/X86_Disassembly/Windows_Executable_Files%23/media/File:RevEngPeSig.JPG
https://en.wikibooks.org/wiki/X86_Disassembly/Windows_Executable_Files%23/media/File:RevEngPeSig.JPG
https://remnux.org/
https://www.wired.com/2015/02/kapersky-discovers-equation-group/

Which YARA Rules Rule: Basic or Advanced? 34

Appendix A
Simple Static Malware Analyzer Results - Equation Laser

csculling@ubuntu:~/SSMAS python3 ssma.py /home/csculling/Desktop/Equationlaser/EquationLaser_DE356F2A55B25E847424
23B5EC56DE93

ﬁ Si.mp]_.e
— |! | Hotuare
Analyzer

File Details:
File: /home/csculling/Desktop/EquationLaser/EquationLaser DE356F2A55B25E04742423B5EC56DE93
Size: 132612 bytes
Type: application/x-dosexec
de356f2a55b25e04742423b5ec56de93
446323d945ce71385%9ad3451cb4a5db0541020d6
Mon Oct 18 ©8:24:05 2004

Section VirtualAddress VirtualSize SizeofRawData Sections_MD5_Hash Section_Entropy
.text ©x1000 108720 109056 542606a0ac9bcOc21Tb965438921fceb 6.579159815610209
.rdata ©x1c@o0 6239 6656 c595146db5a7811cdOba2d4dcc2264e2 5.3319319633434175
.data 0x1e000 311224 6144 4356caba9211586296347c65¢c32cc533
Shared ©x6a000 280 512 bf619eac@cdf3f68d496ea9344137e8b
WFSTC 0x6b00O 1048 1536 foddc37fff16a7b42285f672ee799e87 2.5508121523378002
.reloc Bx6cO00 7254 7680 6abbbb5d83042ccdddc319¢9771351d7 5.765710311641036

Shared

Overlay Data is present which is often associated with malwar
Start offset: 9x00020600
Y FH 0x00000004 4 bytes 0.00%
MD5: e704cdc9befef9192cf88e9d889382a4
SHA-256: 7122bdbeb9d04c1ab4924e8d941c84c5043e8f678831cd07fB83d4cbd3259b805
MAGIC: b'c2aa573b66"' ;f
PE file without overlay:
MD5: 752af597e6d9fd70396acccOb9013dbe
SHA-256 9412a66bc81f51alfa916ac47c77eB2ac1a7c9dff543233ed70aa265ef6ale76

This file contains a list of Windows functions commonly used by malware.
For more information use the Microsoft documentation.

- Retrieves the hostname of the computer. Backdoors sometimes use gethostname as part of a su
rvey of the victim machine.
- Used to perform a DNS lookup on a particular hostname prior to making an IP connection to
a remote host. Hostnames that serve as command- and-control servers often make good network-based signatures.
- Sends data to a remote machine. Malware often uses this function to send data to a remote comman
d-and-control server.
- Receives data from a remote machine. Malware often uses this function to receive data from a remot
e command-and-control server.
- Receives data from a remote machine. Malware often uses this function to receive data from a r
emote command-and-control server.
- Used to initialize low-level network functionality. Finding calls to WSAStartup can often be
an easy way to locate the start of network-related functionality.
- Sends a control message from user space to a device driver. DeviceloControl is popular
with kernel malware because it is an easy, flexible way to pass information between user space and kernel space.
- Resumes a previously suspended thread. ResumeThread is used as part of several injection t
echniques.
- Creates a new file or opens an existing file.
- Returns information about which version of Windows is currentlv runnina. This can be used

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 35

as part of a victim survey or to select between different offsets for undocumented structures that have changed
between different versions of Windows.
- Retrieves the address of a function in a DLL loaded into memory. Used to import function
s from other DLLs in addition to the functions imported in the PE file header.
- Loads a DLL into a process that may not have been loaded when the program started. Importe
d by nearly every Win32 program.
- Creates a mutual exclusion object that can be used by malware to ensure that only a single
instance of the malware is running on a system at any given time. Malware often uses fixed names for mutexes, wh
ich can be good host-based indicators to detect additional installations of the malware.
- Maps a file into memory and makes the contents of the file accessible via memory addresse
s. Launchers, loaders, and injectors use this function to read and modify PE files. By using MapViewOfFile , the
malware can avoid using WriteFile to modify the contents of a file.
- Creates a new file or opens an existing file.
- Creates a handle to a file mapping that loads a file into memory and makes it access
ible via memory addresses. Launchers, loaders, and injectors use this function to read and modify PE files.
- Returns the file path to the Windows directory (usually C:\Windows). Malware somet
imes uses this call to determine into which directory to install additional malicious programs.
- Modifies the creation, access, or last modified time of a file. Malware often uses this fun
ction to conceal malicious activity.
- Used to obtain a handle to an already loaded module. Malware may use GetModuleHandle t
o locate and modify code in a loaded module or to search for a good location to inject code.
- Used to convert a Unicode string into an ASCII string.
- Loads a DLL into a process that may not have been loaded when the program started. Importe
d by nearly every Win32 program.
- Opens a handle to another process running on the system. This handle can be used to read an
d write to the other process memory or to inject code into the other process.
- Returns the temporary file path. If you see malware call this function, check whether it r
eads or writes any files in the temporary file path.
- Creates a new file or opens an existing file.
- Creates and launches a new process. If malware creates a new process, you will need to a
nalyze the new process as well.
- Creates and launches a new process. If malware creates a new process, you will need to a
nalyze the new process as well.
- Retrieves a structure containing details about how the current process was configured t
o run, such as where the standard handles are directed.
- Retrieves a structure containing details about how the current process was configured t
o run, such as where the standard handles are directed.
- Retrieves the number of milliseconds since bootup. This function is sometimes used to gath
er timing information as an anti-debugging technique. GetTickCount is often added by the compiler and is included
in many executables, so simply seeing it as an imported function provides little information.
- Sets a hook function to be called whenever a certain event is called. Commonly used w
ith keyloggers and spyware, this function also provides an easy way to load a DLL into all GUI processes on the s
ystem. This function is sometimes added by the compiler.
- Used within code that is hooking an event set by SetWindowsHookEx. CallNextHookEx calls
the next hook in the chain. Analyze the function calling CallNextHookEx to determine the purpose of a hook set by
SetWindowsHookEx.
- Opens a handle to a registry key for reading and editing. Registry keys are sometimes wri
tten as a way for software to achieve persistence on a host. The registry also contains a whole host of operating
system and application setting information.
- Opens a handle to another process running on the system. This handle can be used to re
ad and write to the other process memory or to inject code into the other process.
- Opens a handle to a registry key for reading and editing. Registry keys are sometimes wri
tten as a way for software to achieve persistence on a host. The registry also contains a whole host of operating
system and application setting information.
- Opens a handle to a registry key for reading and editing. Registry keys are sometimes writt
en as a way for software to achieve persistence on a host. The registry also contains a whole host of operating s
ystem and application setting information.
- Opens a handle to the service control manager. Any program that installs, modifies, or c
ontrols a service must call this function before any other service-manipulation function.

Scan file using Yara-rules.
With Yara rules you can create a "description" of malware families to detect new samples.
For more information: https://virustotal.github.io/yara/

These Yara rules specialised on the identification of well-known malware.
Result:
Str_Win32_Winsock2_Library - Match Winsock 2 API library declaration

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 36

These Yara Rules aimed to detect well-known sofware packers, that can be used by malware to hide itself.

Result:
Armadillo_vixx_v2xx_additional
Microsoft_Visual Cpp 60 DLL_additional
Microsoft_Visual Cpp_v76_DLL
Microsoft_Visual Cpp_v50v60_MFC
Microsoft_Visual Cpp_66_DLL_Debug
Armadillo_vixx_v2xx
Microsoft_Visual Cpp _v60@ _DLL
Microsoft_Visual Cpp_66_DLL
Microsoft_Visual Cpp_60

These Yara rules aimed to detect the existence of cryptographic algoritms.
Detected cryptographic algorithms:

CRC32_poly Constant - Look for CRC32 [poly]
CRC32_table - Look for CRC32 table

These Yara Rules aimed to detect anti-debug and anti-virtualization techniques used by malware to evade automated
analysis.
Result:

win_mutex - Create or check mutex

win_registry - Affect system registries

win_token - Affect system token

win_private profile - Affect private profile

win_files_operation - Affect private profile

win_hook - Affect hook table

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 37

Appendix B

Simple Static Malware Analyzer Results - FannyWorm

csculling@ubuntu:~/SSMAS python3 ssma.py /home/csculling/Desktop/FannyWorm/FannyWorm_2C029BES8E3BOCI448EDS
E88B52852ADE

ﬁ # Si.mp}e
= |! | R
Analyzer

File Details:
File: /home/csculling/Desktop/FannyWorm/FannyWorm_ 2C@29BES8E3BOC9448EDSE88B52852ADE
Size: 184320 bytes
Type: application/x-dosexec
MD5: 2c@29beBe3bBc9448ed5eB88b52852ade
SHA1l: cd6fddaa492a38629fd80c46bb2c2d37ecBa444c
Date: Mon Jul 28 ©1:11:35 2008
PE file entropy: 6.372985768797145

Section VirtualAddress VirtualSize SizeofRawData Sections_MD5_Hash Section_Entropy

.text 0x1000 50613 53248 6d75617229827b2cfd28f8c7d4faed49c 6.204662699717051
.rdata Oxedo8 7090 8192 611bf51687e24fbdbb68797ac2%a46e6 5.113443284517251
.data 0x10000 2156 4096 2cefB86abb489ad5788edf99844ed4ab8 2.9325260938167017

.rsrc 0x11000 108344 118592 b3e9018bec3f078148601de6a52ce323 6.540798356733707

6
0x2c000 46431dede6ae9f44f5bdd5c03595bc5c 4.831299025167482

Mo overlay D

This file contains a list of Windows functions commonly used by malware.
For more information use the Microsoft documentation.

- Creates a mutual exclusion object that can be used by malware to ensure that only
a single instance of the malware is running on a system at any given time. Malware often uses fixed names
for mutexes, which can be good host-based indicators to detect additional installations of the malware.
- Opens a handle to a mutual exclusion object that can be used by malware to ensure th
at only a single instance of malware is running on a system at any given time. Malware often uses fixed n
ames for mutexes, which can be good host-based indicators.
- Returns the temporary file path. If you see malware call this function, check whet
her it reads or writes any files in the temporary file path.
- Opens a handle to another process running on the system. This handle can be used to
read and write to the other process memory or to inject code into the other process.
- Returns information about which version of Windows is currently running. This can
be used as part of a victim survey or to select between different offsets for undocumented structures th
at have changed between different versions of Windows.
- Creates a mutual exclusion object that can be used by malware to ensure that only
a single instance of the malware is running on a system at any given time. Malware often uses fixed names
for mutexes, which can be good host-based indicators to detect additional installations of the malware.
- Opens a handle to a mutual exclusion object that can be used by malware to ensure th
at only a single instance of malware is running on a system at any given time. Malware often uses fixed n
ames for mutexes, which can be good host-based indicators.
- Used to obtain a handle to an already loaded module. Malware may use GetModule
Handle to locate and modify code in a loaded module or to search for a good location to inject code
- Loads a DLL into a process that may not have been loaded when the program s
d. Imported by nearly every Win32 program.
- Creates a new file or opens an existing file.
- Loads a DLL into a process that may not have been loaded when the program started.
Imported by nearly every Win32 program.

- Maps a file into memory and makes the contents of the file accessible via memory
addresses. Launchers, loaders, and injectors use this function to read and medify PE files. By using MapV
iew0fFile , the malware can avoid using WriteFile to modify the contents of a file.

- Creates a new file or opens an existing file.
- Creates a handle to a file mapping that loads a file into memory and makes i
t accessible via memory addresses. Launchers, loaders, and injectors use this function to read and modify

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 38

PE files.
- Loads a DLL into a process that may not have been loaded when the program started.
Imported by nearly every Win32 program.
- Retrieves the address of a function in a DLL loaded into memory. Used to import
functions from other DLLs in addition to the functions imported in the PE file header.
- Creates a new file or opens an existing file.
- Modifies the creation, access, or last modified time of a file. Malware often uses
this function to conceal malicious activity.
- Creates and launches a new process. If malware creates a new process, you will n
eed to analyze the new process as well.
- Used to find a resource in an executable or loaded DLL. Malware some- times uses
resources to store strings, configuration information, or other malicious files. If you see this function
used, check for a .rsrc section in the malware’s PE header.
- Loads a resource from a PE file into memory. Malware sometimes uses resources to s
tore strings, configuration information, or other malicious files
- Opens a handle to another process running on the system. This handle can be us
ed to read and write to the other process memory or to inject code into the other process.
- Opens a handle to a registry key for reading and editing. Registry keys are somet
imes written as a way for software to achieve persistence on a host. The registry also contains a whole h
ost of operating system and application setting information.

Scan file using Yara-rules.

With Yara rules you can create a "description" of malware families to detect new samples.
For more information: https://virustotal.github.io/yara/

These Yara rules specialised on the identification of well-known malware.

Str_Win32 Winsock2 Library - Match Winsock 2 API library declaration

Rules aimed to detect well-known sofware packers, that can be used by malware to hide itself.

Armadillo_vixx_v2xx_additional
Microsoft_Visual_Cpp_66_DLL_additional
Microsoft_Visual Cpp_v70 DLL
Microsoft Visual Cpp_v50v6@ MFC
Microsoft Visual Cpp_66 DLL Debug
Armadillo_vixx v2xx
Microsoft_Visual_Cpp_v66_DLL
Microsoft Visual Cpp_66 DLL
Microsoft_Visual_Cpp_60

ra rules aimed to detect the existence of ¢
Detected cryptographic algorithms:

CRC32_poly_Constant - Look for CRC32 [poly]

CRC32_table - Look for CRC32 table

These Yara Rules aimed to detect anti-debug and anti-virtualization techniques used by malware to evade a
utomated analysis.
Result:

antisb_threatExpert - Anti-Sandbox checks for ThreatExpert

win_mutex - Create or check mutex

win_registry - Affect system registries

win_token - Affect system token

win_files operation - Affect private profile

Ups... That's all :)

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 39

Appendix C

Joe Sandbox Cloud - FannyWorm

JOESandbox Cloud™

ID: 596380
Sample Name: ZuDBYiOvi4

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 40

Table of Contents

Table of Contents
Analysis Report

Overview
General Information
Detection
Confidence
Classification
Analysis Advice
Signature Overview
A\ Datection:
Exploits:
Persistence and Installation Behavior:
Data Obfuscation:

System Summary:
HIFS § PFW / Operating System Protection Evasion:
Anti Debugging:
Malware Analysis System Evasion:
Hooking and other Technigues for Hiding and Protection:
Language, Device and Operating System Detection:
Behavior Graph
Simulations
Behavior and APls
Antivirus Detection
Initial Sample
Dropped Files
Unpacked PE Files
Domains
URLs
Yara Overview
Initial Sample
PCAP (Network Traffic)
Dropped Files
Memory Dumps
Unpacked PEs
Joe Sandbox View / Context
IPs
Domains
ASN
Dropped Files
Screenshots
Startup
Created / dropped Files

Contacted Domains/Contacted IPs
Contacted Domains

dd_"_"_"_"
RMMNOOOCoocoo Do D OOoen @e®-wudwswseoeoddogbs s S SR

Contacted IPs
Static File Info 12
General 12
File lcon 13
Static PE Info 13
General 13
Entrypoint Preview 13
Data Directones 14
Sections 15
Resources 15
Imporis 15
Possible Crigin 15
Metwork Behavior 15
Code Manipulations 16

Capyright Joe Secuwity LLC 2018 Page 2 of 19

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 41

Statistics 16
Behavior 16
System Behavior 16
Analysis Process: loaddll32.exe PID: 3548 Parent PID: 2916 16
General 16
File Activiies 16
File Wiitten 18
Analysis Process: rundll32.exe PID: 3556 Parent PID: 3548 17
General 17
File Activiies 17
Registry Activities 17
Analysis Process: msupdate.exe PID: 3564 Parent PID: 3556 17
General 18
File Activiies 18
Registry Activities 18
Analysis Process: rundll32.exe PID: 3588 Parent PID: 3564 18
General 18
File Activiies 18
Analysis Process: rundll32.exe PID: 3692 Parent PID: 3548 18
General 18
File Activiies 18
Disassembly 19
Code Analysis 19
Copyright Jog Security LLC 2018 Fage 3 of 19

Christopher S. Culling, cscullingl @gmail.com

Overview
General Information

Joe Sandbox Version:
Analysis I0:

Start time:

Joe Sandbox Product:

San date:

Orverall anatysis duration:
Hypervisar bazed inspection enabled:
Repart type:
Eample fie nama:
Cookbook file name:
Analysis sysiem description:

Humber of analysed new started processes analysed:
Humber of new started drivers analysed:

Humber of edsting processes anabysed:
Mumber of existing drivers analysed:
Mumber of injected processes analysed:
Technalogies

Analysis stop reason:
Dietectian:
Classificasion:

HGA Infarmation:

EGA Infarmation:
HDC Informaion:

‘Wamings:

Detection

Confidence

Cepyright Joe Secwrity LLC 2018

Which YARA Rules Rule: Basic or Advanced? 42

Analysis Report

Range Reporting

']

- 100 @ Report FR/FN

Christopher S. Culling, cscullingl @gmail.com

2300

SR8X80

01:62-29

Cloud

01.07.2018

Oh 3m dis

talse

lighat

ZuDBEYIOvE (renamed file extansion from none o di)
defautjs

‘Windows 7 (Office 2010 SP2, Java 1.8.0_40, Flash

16.000.305, Acrobat Reader 11.0.08, Insemet Explorer
11, Chrome 58, Firefox 43)

7

e 2 8 B2

malT & evad. explwinDL LGS T SO0

Successhul, ada: 4%

= Mumber of exsculed functions: 0
Mumber of nonsexecuted funcions: O

Suooessful, mda: 100%

+ Successful, mSa: 100% (pood quality ratio 94.7%)
* Cuality average: B4 9%

Cuality standard deviation: 28.1%

Afust boot time
Coredting counters for adjusied boot time:

Sxart process as user (medium integrity level)
Adprsied sysiem tme fo: 27008

Saop behavior analysis, all processes terminated

-

- *

LI

Show Al
Exclude process from analysis (whitelisted):
conhostexe, dibhostexe

F MALICIOUS 1

Page 4 of 19

Which YARA Rules Rule: Basic or Advanced? 43

Strategy Score Range Further Analysis Required?

Theesholkd 5 0-5 false

Classification

Miner Spreading

"

Phishi

Exploiter

Banker

Trojan / Bot

M. 4

Analysis Advice

Contains to modify the of threads in other processes

Cepyright Joe Security LLC 2018 Page Sof 19

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 44

‘Sampie drops PE files which have not been started, submit dropped PE ples for a Y o Joe

Signature Overview

& AN Detoction

® Exploits

@ Persistence and Instaliation Behaviar

@ Data Obduscation

& Sysiem Summary

® HIPS / PFW | Operating System Probection Evarsion

@ Anti Debugging

® habvare Analysis System Evasion

® Hoaoking and ofher Technigues for Hiding and Pratection
@ Language, Device and Opemting System Detection

2 Click to jums 1o signature section

AV Detection:

Persistence and Installation Behavior:

Data Obfuscation: _

Creates temporary files

[PE file has an executable text section and no other executable section
Reads software policies

Reads the Windows: tis

Copyright Joe Security LLC 2018 Page 6ol 19

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 45

Reads the Windows registered cwner settings.

HIFS | PFW | Operating System Protection Evasion:

L

z
g
£
H
E

Malware Analysis Systemn Evasion:

{
:
i
i

Gueries a list of all running drivers:
Queries a list of all running processes.

:

Hooking and other Technigues for Hiding and Protection:

1 ‘

eaTOr ges (SetEmoriode)

Language, Device and Operating System Detection:

;

C liity to query version

Behavior Graph

Copyright Joe Security LLC 2018 Page 7ol 19

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 46

Hide Lagand

- - Legend:

— e [precess
e] sigratee
_— = [created Fie

—> 0 £2% Mumber of crealed Regisiry Vakues
m [Mumbes of creatsd Files
/___ 1___ S vieusl Basic
— & - & I Deteti

-
@R
— \ |
P E=E
[] =]
Simulations
Behavier and APIls
Time Type Description
015321 AP Inferceptor 1x Sleep call for process: rundll3Zexe modified
015322 AP Imeroepor 1x Sleep call for process: msupdate exe modified
Antivirus Detection
Initial Sample
Source: Detection Scanner Label Link
Dropped Files
Scanner

Unpacked PE Files

Copyright Joe Security LLC 2018

Page 8of 19

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 47

No Antivinus matches

Yara Overview
Initial Sample
No yara matches

PCAP (Network Traffic)

Mo yara matches.

Dropped Files

Ho yara matches.

Memory Dumps

No yara matches.

Unpacked PEs

No yara matches.

Joe Sandbox View [Context

IPs

Dropped Files

Copyright Joe Security LLC 2018 Page Dol 19

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 48

Mo context

Screenshots

Startup

= System is w?_1
« N [PID: 3548 cmdline: loaddiid2.exe “C:MUsers\wsenDeskiophZu DB YiCvid 0l MDS: D27 S2AB5032CFES2EF0TDCDYBECEFA0F)

=+ (PiD: 3556 omdiine: rundii32 exe CAlsersiusediDeskioplZulB Yi0wid di, #1 MDE 51138BEEASE2C ECA4D0SRICT 1 FE2AR)

® ooz (PID: 3864 cmdine: C:WUsersuser- IvippDatallocaf Tempimsupdate.erxe MOS: DDCSS1 5451 S8A9560A0 1EF2F 1 GOCEDME)

L] _] n wz (PIC: 3588 cndline: nndi32 C:¥indows\MS AgenB A GENTCPD.OLL _starti® 16 0 MIDS: 51138BEEAIE2C2 1 ECA4D0SI2CT 1 TE2AR)
nndiEE2 e (PID: 3652 omdiine: rundi32 exe CillsersiusediDesbop\ ZuDB vidhid dil, #2 MDE: S1138BEEAIEIC1ECA4DDSAICTT 1 TE I A)

- [

= cleanup

Created / dropped Files

CiUsersiuser~1\AppData\lscal\Tempimsupdate.axe ﬂ
Process: CAWincows1System I A rund i exe
File Type: PEX2 executable jconsole] insel 80386, for M2 Windows
Size |bytes) 10406
Entropy (Bhit): 652200286 14T1135
Copyright Joe Security LLC 2018 Fage 100l 19

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 49

|

Talze

DOCH31 SAS15AAEE0ADEF 2F 160 CEGAE
ABRTORFERADIIIAOFFIFCE 1 AdBARCEC 1CCEIAATED
SETTFABAS1 AT C2B5T2CESETBCEAST 13045 1 AEBSSCEREACAETZ14CFEBICCT 2D

TDADZIADET 1 3B B2 EAFEFBEE 1 MECHIAL 1 2ABET P84 EECO2FFIISESFTAJAEAL TEIT 1112 TES550E BOFISE20
AN952ECA2CEADAT EFODCEBODETTBD 14FATAF4S

true
= Antivines: Asira, Detection: 100%, Browss
llow

|

CALsersusedAppDatal ocahTemphmsupdate. o
PE32 execistable {DLLY {GUI) intel BOI8E, for M2 Windaws.

12768

4 SOIEDUEASI 13648

false

CO2CAD4ERDIGFBFRADEITSEF0E1DAE02

CIAEATAZALF 141B41CE9911079151FDECOOCOAC

77419007 F4 BDASBCS 1072 BREL AED4 3088AD 4 FABBEE20BFE4E20C1 1102440

B3ET412ECOS4E 1 E20ECEIC 14ARSCETBO0TFOOE DT 284 5804 EX2 TEIBAF QSE A1 90F FAAADON 1 ID0T CFESEEIFBAAR
CCES0ABARDEY | 22THASER A 18F 2C2AF TREQETOT

‘brue
o Antivines: dira, Detecion: 100%, Browse
e

1l

C\Windows ' Temp\~DE1923.tmp
Process:

File Type:
—
Entrapy (Bt
Encrypled:

Cepyright Joe Security LLC 2018

CilsersuseiopDatatLocaliTempimsupdate axe

PEAZ exmcutable (DLL) (3U1) intel B035E, for MS Windows

EAZ4R

B B0ETEE00 14414685

false

CAFSCFDFEEGDIECDFF ICABIEATDIOF 44
ASFRFERSAIDAAASEAFDFORDN 1 CECE1FA38139447

BEBOOE340 1 DMFFAISE2FACO084 1 TOSE2CAS4 5EIRDERT 2BF ASER1CAGCDR 19 1ED

BETCECTIFITERIRBFS105C1F3441TD4CERZCER 1 4ASBL CBENG BEARAFGRABEIL A2 TED SIO0ECET DAAFB0ACIADATE
DCESDODCSIER)BEE FEASAGA I2FOTERAFOEASC

Erue
& Anfvines: Avie, Dedection: 100%, Browss
low

CAUserstuserappDiatsL ol Temgimeundate e
data

a

0. 5435644431 996964

falze

BIGFADEOEL0SEEDCE0 1 ATCECATFATEEY

SAE25403I2893E AF FEEYS1 FCRRCREDMEZ2S00FE]
CHAYIETEMMEESFBEA2DA0 TIBICIF 2 TE SAEE OCSRSESC FFDFABDACIAZADBAT AL

FlBBSaTEFECEADECORA4F ZIED4ETATEON 1483074 14E4 1 4B5E 440D SEADECOE T 4F0TF ADACT ABDE 4 144 200C 1 G202
191DBAY1 8BDECACTEETDATR FEGOR2EASTIDES

false
ow

CilsershuseridppDatail ocall Termplrsupdate exe

data

34540

8502 TS0 28006206

trus

BRASSTCOASABRTCTTETESISEFE 16ABDR
161BDFETES10T 16432 344 D1 SECODAAREIEE4 DOTF

11TAS4214 084 EBF IDABAB0E2E 1 0SS TEF 357 DE SEABSARSE2MIF ABCEEDEF 1 TFET

FEF4T041FEISEFFBAC0THCEC 1ABE42BAFDE 1 1CTCTEEECABEF 184, 550EEA BTCAEAA0BDIAAS TEEZ2EBF JBC1 24862
ATIBCEDSRLFE 2196781 IBB0DEDEELCOBEACFOA

Page 11 of 19

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 50

Malicious: falze

Reputation: (-]

C:udfed

Prooess: CilsersiusedAppDatail ocaliTermpimsupdate exe

Filz Type: data

Size {bytesk () L

Entrapy (Bbit): 48244311 38306385

Encrypled: false

BADeS: DACACATFE0A0 100676 HBEAF JOREAR 15

SHAT: CALECHERE 194188001 4E36F DEAFF 20T 1 72250981

S 254: DO5T551 TECIBESL4B4CMBATHI4E TADAATC OBRIBOBBAIE1 I0ADER 1 TRE2ECCINIF

SHAG12: BCOESROTARCTANDAMCIEFC16ATSTAE 1AD5TE 20T 26C5R0DE BF 52584 16ERSBADERSIBFCFTOE2 CADF 29E LAATFOT
SECH0CTD4FFEY1 8148ESEQETITAZRDDAR 1 S1A4DE

Malicious: false

Reputation: (-]

stdout

Prooess: CAWindows\System XA loaddi2 exe

File Type: MASCI text, with CRLUF line serminators

Sz {bytes 221

Entrapy (Bbit): 4 BE21SB510520081

Encrypled: false

BADeS: C4205A10AB S DRAGTARTEDASDOGIOEED

SHAT: A20ICBACIEATCOA0OED455E4ADS 1 BOBBALACEDLD

S 256 O2ETTECE2FCESSE3TI0EA0RYT 1B FDOAEIB0 1 BSBESATDEAF 1 BF ASBEOTER 1 BEARS

SHM-512: EIF1 381675501 DEOX0T FCATDCERE 144 5EET0A40DEFF EA4 C SIS RI5R0EQN4480CCFOSEQARE ALAF F2 JAF B4 FBCO0E!
4BF 1ADCDTEBDEDF 4324 1 BE0AMASSDSO0IAR1

Malicious: false

Reputation: (-]

Contacted Domains/Contacted IPs

Contacted Domains

Ho contacted domains info

Contacted IPs

Ho contacted IF infos.

Static File Info
General
Fila type: PEX2 executable (DLL) {GUI) Iniel BO3BE, for MS Wi
noows.
Entrapy {Bbit): BAT1H20T0404TET
TriD: * Win32 Cynamic Link Library {generic) [1002004/3)
a9.60%
= Ganeric Win/DOS Executable (200473) 0.20%
= DOE Executable Generic (20021) 0.20%
Mutodesk FLIC Image Fie (extensians: fic, fii, cel)
(T3} 0.00%
File name: ZuDEYiOtd dil
File siza: 1B4R20
ADeS: b2 TacTZ2B4TEald0a IB0GS2 004
S ol ed 5153560 1436 501 B30 Jefbh 200680405
SHAZSE: eBdd 1 0cEI95e 308 58ec1d Bded i TolboOd 84ba 4 2iad TG
1EcEfl44Tc 1 SE05a
SHASTX: abBs0TE B fiSoET eella | 45604 TdEMGce TTibae Tobcl
‘BEaT118518481 bo0S0E0 1 OB e S TRIB e 2a S b e BN
‘Secl) 1b3a T OdiEcoTT 2083 1 bidbidalf
Copyright Joe Security LLC 2018 Page 12 of 19

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 51

General

is pragram cannat be run in DOE mode. LY
w o Y e R Yo Y T Y Yo o Y o Y R Y Y
Y T Y 0 Yo Yeh Yo Yeh Yo Yo, Yow Yeh Y ow Y
Richow. Y.

File lcon

Static PE Info

General

Entrypoint: heiD0icd 1b

Enirypoint Secion: bt

Digitalty signad: false

imagabase: O 10000000

Subsysien: windows gui

image File Characteristios: LOGAL_SYMS_STRIFPED, 328IT_MACHINE, EXECUTABLE IMAGE, DLL,
LINE_WUMS_STRIPPED

DLL Characlenstics:

Time Stamg: oA BBOTFAT [Mon Jul 28 08:11:35 2008 UTC)

TLS Callbacks:

CLR [.Med) Version:

OS Version Major:

05 Version Minor:

File Version Major:

File Version Mirar:

Subsysiem Version Major:

(=T - N - Y

Subsysiem Version Minor:
Import Hash: 1i5eTE5T Had BEE5IT I42Bcal ST 153

Entrypaoint Preview

Instruction

push ebp

mov edp, esp

push sk

maov ehx, dward pir [ehp+08h)
push esi

mow esi, dword pir febp+0Ch]
push edi

maov exdi, dward pir [ebp+10h])
test esi, e

jrez OOOOTF 33053 10AABR
cmip dword par [10010854h], 000000000
e DOOOTF 330531 0ACER
cmip esd, 01h

e OOOOTF 33033 10AATH

omp esi, 02h

jres QOOOTF 330831 0AC4h
mov eax, dward ptr [10041 086&h]
fest g, sax

e OOOOTF 33033 10AAB
push edi

push esi

push shx

call eax

fest g, sax

e OOOOTF 33033 10AAER
push edi

push esi

push shx

call DODOTF XA0S0 1 0S8N

Copyright Joe Security LLC 2018 Fage 13 of 19

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 52

Instruction

fest ean, pax

e DOD0TF 330531 QB
EDF EK, BAK

jmp DOOOTF X053 104F 00
push edi

push esi

push ehix

call (O00TFEI0MIET43h
omp esi, 01h

mov dword par febps0ChH], sax
jrez DOOOTF 33053 10AMER
fest ean, pax

jre 0O00TF 33053 10A0EN
push edi

push sax

push ek

call (O00TFXI05810536h
test esi, esi

je OOOOTF 33033 10AATH
omp esi, (h

jree OOOOTF 330531 QAClh
push edi

push esi

push ehix

call (O00TFXI050 1 0aEh
fest ean, gax

jree OOOOTF 330531 QAMEn
and dword pir [ebp+0Ch], sax
omp dword pir jebp=-0Ch], GH00000H
je O0OOTF 33033 10AB30
mov eax, dwond pir [10041 G8685]
fest ean, gax

je OOOOTF 330931 0AAA
push edi

push esi

push ehix

call eax

mav cword par febps0Ch], eax
mov eax, dword pir [ebp+0CH]
pop edi

pop ed

pop ebx

pop =bp

retn 000CHh

jmp cword par [100GE1 D06
jmn dwoed pir [1000E 1 Déh]
jmp cwoed par [100GE 1 Edh]
jmp cword par [1000E1ECh]
jmn dword par [1000E 1 Fdh)
jmp cword pir [100061806)

Data Directories

Mame Virtal Address Wirtual Size Is in Section
MMAGE DIRECTORY ENTRY _EXPORT Ofbo?l Ol 2 adata
IMAGE DIRECTORY ENTRY_IMPORT
IMAGE_DIRECTORY_ENTRY_RESOURCE
IMAGE_DIRECTORY_ENTRY_EXCEFTION
MAGE_DIRECTORY ENTRY _SECLIRITY
MAGE_DIRECTORY_ENTRY_BASERELOC
IMAGE _DIRECTORY ENMTRY _DEBUG
IMAGE_DIRECTORY_ENTRY_COPYRIGHT
IMAGE_DIRECTORY_ENTRY_GLOBALPTR
MAGE_DIRECTORY _ENTRY_TLS

EEEEEEEE
i

Copyright Joe Security LLC 2018 Page 14 of 19

Christopher S. Culling, cscullingl @gmail.com

IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG
MAGE_DIRECTORY ENTRY_BOUMD_IMPORT

MAGE_DIRECTORY ENTRY_IAT

IMAGE_DIRECTORY ENTRY DELAY _IMPORT
IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR
MAGE_DIRECTORY ENTRY RESERVED

Sections

Wirtual Address
Q1000

Jext

soata
data 010000

el 1000

Resources

BINARY

BINARY
BINARY
BINARY
BINARY
Imports

BLL
WE2_39 I
KERMELE2.dll

USER3ZdAI
ADVAPII2.AI

MSVCRT.dl

Possible Origin

Language of compilation system

English

MNetwork Behavior

Copyright Joe Security LLC 2018

Virtwal Stre Raw Size
Omcfns Cmai(00
O 1bbZ 2000
OxliGc Om 1000
O 1 aT 38 Ot 1000
D) D= 1000

Sive

2

ax1

1 a0

el

L]

Which YARA Rules Rule: Basic or Advanced? 53

Wirtual Address Wirtual Size Is in Section
Ol L]
el (]
o000 20 srdata
1] sl
el (]
el (]
Xored PE ZLIB Complexity File Type Entropy Characteristics
Faise: 0,481 370182308 data 6204 16166568 IMAGE_SCM_MEM_EXECUTE,
IMAGE_SCH_CHNT_CODE,
IMAGE_SCHN_MEM_READ
False D3R 148478 data 5.01334328452 IMAGE_SCHN_CHNT_INITIALIZED D
Th, IMAGE_SCH_MEM_READ
Faise: 027001983128 data 280252600082 IMAGE_SCH_CNT_INITIALIZED D
Th, IMAGE_SCH_MEM_WRITE,
IMAGE_SCH_MEM_READ
Faise 05047 1AB05AZY data 6 BADBINL 16X IMAGE_SCH_CHNT_INITIALIZED_ Dl
Th, IMAGE_SCH_MEM_READ
False: 0.561 03518628 data 4. 9ZIEE106T4 IMAGE_SCH_CNT_INITIALIZED_Dw,
Th,
IMAGE_SCH_MEM_DISCARDARLE,
IMAGE_SCHN_MEM_READ
Type Language Country
Hon=l20 exiended-ASCI text, with very long lines, with no
line terminators
wery short file (no magic) English United Siates
PEL2 exsoutable (consake) intel BO3BE, for MS Windows
wery short fle (no magic) English Unied Siates
ASCI teat, with na line terminatons English United States

impart
tanl

FindClass, FindFirstFiled, GetValumednformasionA, WaitF Oijact, Createf i, Opank A, ReadFile,
FincMextFiled, FresLibrary, GeiTempPathi, GetSystemDirecioryd, GetSystem Time, hl.rhnl. Istrogmym,
GetComputariamed, OpanProcess, GetversionExA, GetboculeFileflamad, LocalFree, LocalAdiac, GetCurrentProoess,
GetCurrentTheead, Createldules\y, SetlastEmor, Istrcpyph, Getversion, istncatd, VinualFres, Releasebutex, Virtualdlioc,
Openbiules\y, GathoduleHandied, LoadLibraryExd, |sBadReadPir, CreaieFieW, GetEnvircnmentyanabke\¥,
LoadLibran/¥, Map\iewOfFie, CreatsFilefappingA, LoadLibraryA, SetFilePrinter, GetProcAddress, CreateThread,
Sieap, CraateFileA, WriteFile, CloseHandia, GetFileTima, SaFileTime, CreateProcessh, BeginlpdaieResourced,
UpdaieResourcef, EndUpdateResourced, FindResourced, LoadResource, SineofResource, LockResource,
DeleteFileh, GetlastError, CopyFiled, SatFilsfnribuesh, GetEnvironmentVanabled, GetCurmentProcessid, GetFileSime
UnregisierClass#, SetProph, CreatsWindowEx\W, DestroyWindaw, wsprintfh, UnregisterClassiy
RegDeletev'alust, RegEnum\alued, Loakupdcoountiame, RegEnumEeyExh, LockunAccountSida, Is'alidSid,
AccessCheck, D-p-unPranhnn GaiTakenirormation, GetSidSubduthorityCount, GetSidSubduthority,
Geillsert W, LoakuphocountSidW, AlomtedndinitializeSid, FreeSid, RegOpenkeyExh, ReglueryalueExh,
Rngﬁmaml{nyEm Fbugt‘.hul(n;r. RegSelvalusExA, SetSecurityDescriptorGeoun, SetSecurityDescriptarCwner,
. iddiccesshlowedios, intializedc], DupbcateTokenEx, OpenThreadToken,

&lSadldunﬁmh:ﬂuiy, Suﬁuwﬂyﬂuunpuﬂad

_mbschr, _local_unwind?, stromp, wesncat, wesopy, strmomp, _wesiomg, _adjust fdiv, _iboa, _siriomp, sscand, sincat,
memsed, Sirswr, strncpy, memogy, strien, malloc, stropy, free, s, memoma, :rpmlf _fiod, realioc,
_abnomal_tesmination, wosemp, weslen, TTEYAXPROUGEZ, TT2@YAPAIEE, _inimemm

Country where language is spoken

United Stales

Page 15 of 19

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 54

Mo neteork behavier found

Code Manipulations

Statistics

Behavior

® loaddl 32 exe
® rundlid2 e
& msupdate exe
& rundiii2 exe
® rundlid2_ e

r&‘ Click to jump 1o process

System Behavior

Analysis Process: loaddll32.exe PID: 3548 Parent PID: 2916

General
Start fime: i} b % 3]
Stari date: 2EM0TR008
Pathc CAvindows\ Systemiloacd il exe
‘WowEd process [32 false
Commandine: IcaddiiZ exe 'C:iUsersiuseriDeskiophZuDB Vit 4
imagebase: O M0 D000
File siza: 112840 bytes
BADS hashe DEFa2ASS0A2CFERRSFOTDCDIBECEFA0F
Has administralor privileges: e
[Programmed in: C, C++ or other language
Reputation: madarae

File Activities

Fille Written

Source
[File Path Offset Length Value Ascil Completion Count Address Symbol
Copyright Joe Securty LLC 2018 Page 160019

Christopher S. Culling, cscullingl @gmail.com

File Path
shdout

Which YARA Rules Rule: Basic or Advanced? 55

Offset Length Value Ascil

unknown 221

Completion
4B &f 75 Ge B4 Ja 20 32 Found: 2 exports, SUCESS o walil
20065 T8 70 & T2 74 T3 calling..Cal exparts
20206361 606cF 2 Successhully called omd
e &7 0d 0o 4361 6c ne undi3Z axe Cills
o 2065 T8 7O 6F 72 74 erstuser\Deskiop\ZuDBYi
TIANI2Z0dMa BEITE Owid.dl,#1..Successhully
EIGIEETATIGETE called omd line:

g fic T3 20 63 1 fc bo rundi32exe Cilsersiuse
65 64 20 B3 6d B4 20 riDeskiop\ZuDEY 0wt dIL,
GoboGe B5 2072 TS &2

e G4 Bc Bo 33 32 2w

65 T8 B5 20 43 3a fc

156 7365 T2 73 Bo Bo

T G 85 T4 &1 79 6o GF

T2 5044 6573 6b T4 &

T 5c5a T5 44 42 158

68 4 TE T4 34 2p B4 ic.

g 2o X3 31 Od da B3

TH G B3 65 T3 T3 66

Th o o TS 20 63 81 Go

g 65 64 20 B3 &d B4

20 6o 69 Ga 65 2072

T Ge B4 Bc o 33 32

2o 55 T8 65 20 43 3a

50 66 T3 6572 T3 Bc

g T b 65 74 &1 79

6o Bf 72 Bo 44 65 T3 Bb

74 G 70 6o Sa TS5 44 42

58 63 4f T T4 34 2o b4

g fic g 23 32 Od Oa

Source
Count Address Symbcl

10CATOR WrisFile

Analysis Process: rundlli32.exe PID: 3556 Parent PID: 3548

Christopher S. Culling, cscullingl @gmail.com

General
Stan time: 01:8321
Start date: 250072008
Paitc CAWIndows\SystemIinundldZ exe
‘Wowéd process (12bi) falsa
‘Commandiine: rundii2 exe CVUsersuseriDeskiog ZuDEY IOt diLg 1
imagabase: OxEd0000
File siza: 44544 bytes
BADS hash: S113MBEEAIEICIECAADNSIZCT ITEIAR
Has administralor privileges: e
Prograsmmead in: C, C++ or other language
[Reputation: maodarae
File Activities
Source:
File Path Access Artributes Options Completicn Count Address Symbol
Source
File Path Offset Length Walue Ascii Completicn Count Address Symbol
Source
File Path Offset Langth Complaticn Count Address Symbal
Regiatry Activities
Source
Key Path Completion Count Address Symbol
Source
Key Path Name Type Data Compiletion Count Address Symbol
Analysis Process: msupdate.axe PID: 3564 Parent PID: 3556
Copyright Jog Security LLC 2018 Page 17 of 19

Which YARA Rules Rule: Basic or Advanced? 56

General
Start time: 01:53:21
Start date: 2A0T2008
Pathc ChUsersuseridppDatail ccalTemplmsupdate. exe
‘WowEd process [120it): falsa
Commandiine: GiUsershuser-WippData\localTempimsupdale axe
Imagebase: heaDO000
File siza: 106496 bytes
BADeS hashe DDCe18A5158A9580A01 EF2F16CCESAE
Has administraior privileges: firse
Programmed in: G, G++ or other language
Reputation: ow
File Activities
Source
File Path Access Attributes. Giptions Completion Count Address Symbaol
Source
File Path Offset Length WValwe Ascii Completicn Count Address Symbol
Source
Fils Pathi Offset Langth Completicn Count Address Symbal
Registry Activities
Source
Key Path Completion Count Address Symbol
Source
HKey Path Mame Type Diata Completion Count Address Symbaol
Analysis Process: rundii3Z.exe PID: 3588 Parent PID: 3564
General
Start fime: 01:83:22
Start date: 280072008
Path CAWWindows\SystemXArundi 32 exe
‘WowEd process [120it): falsa
Commandiine: nndii2 CHWindowsiMSAgenWAWGENTCPD.DLL _stan@ 160
Imagebase: heBdDO00
File sia: 24544 bytes
BADHS hashe S113MBEEAAEICIECA4DOSIZCTITEIAR
Has administraior privileges: frue
Programmed in: G, G++ or other language
Repuiation: moderate
File Activities
Source
File Path Offset Length Completion Count Address Symbal
Analysis Process: rundil32.exe PID: 3692 Parent PID: 3548
General
Stan time: 01:53:24
Start date: 280072008
Path CAWWindows\SystemXArundi 32 exe
‘Wowhd process [32bi)|: false
Commandine: rndEE2 . exe ClsersiusstiDeskiop FuDEYOwtd dil, 82
Copyright Joe Security LLC 2018 Fage 18 of 19

Christopher S. Culling, cscullingl @gmail.com

Which YARA Rules Rule: Basic or Advanced? 57

Imagebase: OwEd 0000

File size: 24544 bytes

MDS hash: S1TMBEEAIEICIECA4D0SAICT I TE2AR
Has adminisiralor privileges: s

Progrsmmesd in: C, C++ or other language

Reputaticr: moderate

File Activities

Source
Filz Path Offset Lemgth Completicn Count Address Symbol
Disassembly
Code Analysis
Copyright Joe Security LLC 2018 Fage 19019

Christopher S. Culling, cscullingl @gmail.com

