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ABSTRACT
Many computer-security defenses are reactive—they operate only

when security incidents take place, or immediately thereafter. Re-

cent efforts have attempted to predict security incidents before

they occur, to enable defenders to proactively protect their devices

and networks. These efforts have primarily focused on long-term

predictions. We propose a system that enables proactive defenses at

the level of a single browsing session. By observing user behavior,

it can predict whether they will be exposed to malicious content on

the web seconds before the moment of exposure, thus opening a

window of opportunity for proactive defenses. We evaluate our sys-

tem using three months’ worth of HTTP traffic generated by 20,645

users of a large cellular provider in 2017 and show that it can be

helpful, even when only very low false positive rates are acceptable,

and despite the difficulty of making “on-the-fly” predictions. We

also engage directly with the users through surveys asking them

demographic and security-related questions, to evaluate the utility

of self-reported data for predicting exposure to malicious content.

We find that self-reported data can help forecast exposure risk over

long periods of time. However, even on the long-term, self-reported

data is not as crucial as behavioral measurements to accurately

predict exposure.
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1 INTRODUCTION
John typically uses his mobile device to browse a couple of news

websites, read and post social media updates, and check his web

mail. Today, however, there is a soccer game he really wants to

watch. His TV subscription does not include a streaming option

for the relevant channel; so, instead, he frantically looks for a free

streaming website. His mobile browser issues several warnings,

but John proceeds undeterred, and, after a number of unsuccessful

attempts, manages to find a streaming site—although the website

and game commentary are in Syldavian, a language he does not

speak, he can watch his favorite team on the long commute. Sadly

for him, a relatively common way of monetizing illicit streaming

sites is to get their visitors to download malware [61], and John’s

phone gets compromised in the process. Over the following week,

John loses access to his email account, gets invoiced for premium

calls [27], and funds go missing from his bank account.

Could this have been avoided? Traditionally, mobile users have

relied on blacklists and anti-viruses for protection. However, such

tools suffer from several limitations: they are prone to false positives

and false negatives, and cannot protect users until a site has been

confirmed as malicious and has been included in a blacklist (or a

specific signature has been included in an anti-virus database). In

other words, attackers have a “window of opportunity” between,

at least, the deployment of the malicious site and its inclusion

in a blacklist (see Sec. 4.2). Further, as in John’s example above,

determined users may elect to willfully ignore warnings.

Perhaps, in John’s case, a better approach would have been to

observe that John’s behavior right before his phone got infected was
very different from his usual browsing patterns. On that day, John

was quickly browsing through many pages, some in languages he

does not speak, was spending very little time on each page, and, as

a by-product of his repeated searches, was downloading numerous

advertisements. All of these could have been indicators that John

was engaging in risky behavior.

Such a proactive approach is precisely what we propose. We

devise a system that predicts if user behavior may lead to exposure

tomalicious content ahead of time (e.g., 30 seconds before exposure).

This, in turn, allows for various kinds of interventions to prevent

compromise (rate limiting, warnings, connection termination, ...),

depending on the service provider’s desired level of aggressiveness.

We focus on mobile users, and leverage a combination of web

observations and surveys from a large mobile service provider

to build our predictive engine. In particular, our system exploits

self-reported data about users’ security behavior, past behavioral
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observations, and contextual features about users’ browsing session

to predict if they will be exposed to malicious content.

Contributions. Along the way to designing our system, our paper

offers a number of contributions. First, leveraging three months

worth of data from over 20,600 users of a large mobile provider, we

document the level of exposure of mobile users to malice online (e.g.,

malware), showing that at least 11% of all users get exposed at some

point over our collection interval (Sec. 4). Second, we demonstrate

the limitations of webpage blacklisting—using Google Safe Brows-

ing as a case study, we find that malicious pages are frequently

accessed before being blacklisted: a large number of accesses occur

a few days prior to blacklisting, and we do see much earlier (up

to 87 days prior) accesses as well. Third, our measurements also

demonstrate clear differences in browsing patterns (e.g., length of

browsing sessions) between users that are exposed to malicious

pages and those that are not. Fourth, by surveying these users

through a questionnaire (described in Sec. 3), we build a logistic

regression to estimate to what extent self-reported data can provide

meaningful indicators of risk exposure over time (Sec. 5). Fifth, we

design a long-term predictive classifier that determines the risk of

exposure tomalice for a given user over amonth’s horizon using fea-

tures based on past behavior (Sec. 6). Sixth, and most importantly,

we combine the knowledge we amass from all these experiments to

design a short-term classifier built from features easily computable

in real-time, that can predict exposure to a malicious page within 30

seconds or so with reasonable accuracy (Sec. 7). Still, as browsing

sessions in which users get exposed to malicious content are rarer

than non-exposed sessions, the prediction apparatus could suffer

from a unacceptably large absolute number of false positives. We

use an additional source of data to show that these “false positives”

frequently appear to actually be true positives, that the blacklists we

used for evaluation only learned about days after user exposure. For

instance, the operating point (56% true positive rate; 3% false posi-

tive rate) is likely to be, after correction, at (93% true positive rate;

1% false positive rate), which is far more practical when looking at

absolute numbers; this result further demonstrates the benefits of

our approach compared to a purely reactive, blacklist-based solu-

tion. We finally discuss limitations and possible interventions that

our system enables in Sec. 8.

2 RELATEDWORK
Our research finds itself at the intersection of four different lines of

work: measurement studies to determine to what extent mobile mal-

ware poses an actual threat, systems research that goes beyond sim-

ple blacklisting for protecting end-hosts, work on security-incident

prediction, and research on human factors and their impact on

security.

Prevalence of Mobile Malware. Researchers studied the ecosys-

tem of mobile malware from its early days [27, 93]. For instance,

Zhou and Jiang found that more than 80% of the 1,200 malware sam-

ples they studied were repackaged versions of legitimate software,

and that more than 90% turned their hosts into bots [93].

Estimates of the prevalence of malware infections greatly vary.

One work estimated the prevalence of malware fromDNS traffic col-

lected by a large American cellular provider [49], and asserted that

less than nine in a million devices were infected. A different team

collected information about running processes on users’ devices,

and reached drastically different conclusions [82]—they estimated

that about three per thousand devices were infected. Each estimate

has its own limitations: In the former work [49], malware that uses

hardcoded IP addresses may not be detected (as it does not perform

DNS lookups), while, in the latter work [82], the population sample

may be biased. The true fraction of infected devices probably lies

somewhere in the middle.

Protecting Systems andNetworks. Numerous alternatives to black-

lists and anti-viruses were proposed to help protect networked sys-

tems (e.g., [32, 33, 40, 56, 57, 62, 63, 67, 82, 83, 91]). For instance, Gu

et al. proposed techniques to detect bots within networks [32, 33].

As another example, Nazca detects drive-by-download attacks by

inspecting the collective traffic produced by devices on the net-

work [40]. These previously proposed alternatives intervene only

at, or shortly after, the time of exposure. Instead, we propose to

predict events that may lead to infection and data compromise

ahead of time.

Predicting Security Incidents. Prior work studied the feasibility

of predicting future computer-security incidents [34, 42, 51, 69, 71,

72, 76]. Soska and Christin showed that, using publicly available

indicators, they could reliably predict whether websites would be

compromised within one year [76]. Hao et al. showed they can fore-

cast malicious domain registrations [34]. Liu et al. demonstrated

that one can predict if an enterprise will suffer future security inci-

dents (e.g., server breach), using externally observed indicators (e.g.,

DNS misconfigurations) [51]. Sabottke et al. focused on predicting

which vulnerabilities will be exploited using information collected

from Twitter feeds [69], while Kang et al. proposed to predict what

percentage of hosts within a country are likely to be infected by a

particular piece of malware [42].

Different efforts borrowed methods from epidemiology to un-

derstand which users and enterprises are at a higher risk of com-

promise [12, 47, 81, 90]. Epidemiological methods do not predict

the specific individuals that will suffer from compromise. Yet, they

help develop an understanding of what factors are correlated with

compromise (e.g., type of operating system [12]).

Researchers have also developed methods to predict if users

will be subject to compromise or whether they will visit malicious

websites [9, 10, 50, 59]. Among those, Canali et al. [10]’s work is

the closest to ours. Using the browsing history of ∼160,000 users

collected over three months, they built a machine-learning model

to predict which users will visit malicious websites with about 87%

accuracy using 74 features (e.g., mean volume of user’s traffic). In

contrast to prior work, while we briefly explore long-term pre-

diction in Sec. 6, our main focus is to predict visits to malicious

websites on short timescales (seconds rather than several days or

months) so that rapid intervention can take place if so desired.

Our work further complements system-level measurements with

self-reported answers to surveys to estimate correlations between

posited and actual user behavior on a large scale. Moreover, our

behavioral data is collected non-intrusively via network monitor-

ing, thus demonstrating the feasibility of predicting exposure even

with limited visibility of user activity.

Human Factors Affecting Security. Human factors in computer

security have been extensively studied (e.g., [14, 28, 45, 52, 58, 64,



65, 75]). Christin et al. found that users who run anti-viruses are

more likely to put their devices at risk [14]; our results reproduce

this finding. Some researchers attempted to enhance the ecological

validity of user studies by monitoring users’ behavior via soft-

ware installed on their machines [28, 45]. Surprisingly, they found

that experts do not necessarily behave more securely than non-

experts [28, 45]. Among other findings, certain types of sites (e.g.,

streaming and pornography) present higher risks of infection than

others [45, 61, 87]. Researchers monitoring residential and enter-

prise networks tested which behaviors are correlated with mani-

festations of compromise [52]. They found that visiting blacklisted

websites is highly correlated with such manifestations, thereby

motivating our approach of attempting to predict such visits.

Egelman and Peer developed the Security Behavior Intentions

Scale (SeBIS) as an inexpensive mean to assess users’ security behav-

ior [24]. They found that different sub-scales of SeBIS are strongly

correlated with certain computer security behavior (e.g., users who

score highly on the so-called proactive awareness sub-scale are less

likely to be phished) [11, 21, 22]. Others have questioned whether

scales such as SeBIS are truly predictive of actual behavior in the

field [86]. We explore this question using the proactive awareness

sub-scale of Revised SeBIS (RSeBIS)—a revised version more robust

to language translation [73].

3 DATA COLLECTION
We worked with KDDI, a large Japanese mobile Internet service-

provider to get access to a large corpus of user data. Customers of

this mobile service provider have the opportunity to opt-in to a

certain level of data collection in exchange for rewards. In particu-

lar, users who opt-in consent to the mobile carrier logging HTTP

accesses over the cellular network. In June 2017, we invited a subset

of customers to participate in a research survey, and obtained valid

answers from 20,895 distinct users. We then analyzed the survey

responses and paired them with the HTTP activity logs.

3.1 HTTP Traffic Collection
We rely on logs collected between April 1, 2017 and June 30, 2017.

During that period, out of our initial pool of 20,895 consenting

participants, 20,645 distinct smartphone users appear in the logs.

The others presumably did not use data over cellular during that

period.

Each log entry contains a timestamp of the HTTP request, the

URL accessed, the content of the HTTP Referer field, the number

of bytes uploaded and downloaded, the user-agent string, and a

(unique) user ID corresponding to the customer.

Limitations. The dataset does not include HTTP contents (e.g.,

data sent via HTTP POST) or HTTPS requests, and only includes

HTTP requests whose content-type is text/html. In other words,

we do not have visibility to image-, script-, or multimedia-content

access; likewise, because collection only takes place over the cellular

network, we do not have access to any Wi-Fi traffic.

On a more positive note, collection is completely passive. Users

do not need to change any mobile settings, install specialized soft-

ware, or undertake any form of action other than providing initial

consent to participate in the data collection. Furthermore, prior

work has found that most malicious traffic on the web is served

over HTTP [40, 93]. As a result, we believe that the data we col-

lected reflects the nature of the users’ behavior, has high visibility

to malicious traffic, and is ecologically valid. While the democra-

tization of HTTPS using services such as Let’s Encrypt [2] might

increase the popularity of serving malicious content over HTTPS,

our proposed methods can be adapted by using domain information

only, instead of the entire URL. Further, corporate networks can

perform HTTPS collection using “man-in-the-middle” proxies [19].

A potential concern is that users who consented for the collec-

tion of their data may be less privacy aware than others. This is a

common problem when collecting privacy-sensitive data; without

a control set, we cannot estimate how well the results generalize

beyond our users. Nevertheless, prior work hints that attempts at

generalizing may hold promise, as users’ security-behavior inten-

tions are independent of their privacy-behavior intentions [23].

Ethics and IRB. We worked with Carnegie Mellon’s Internal Re-

view Board (IRB) and the KDDI’s legal team to ensure that our usage

of logs was ethical and respectful of users’ privacy. The logs we use

in our analysis are stored at the mobile carrier, in a secure facility,

unreachable from the Internet. Thus, physical access is required

every time an experiment is conducted.

Inspired by similar sensitivemeasurement experiments described

in the literature (e.g, [54]), we wrote experimental code remotely,

and tested it on synthetic records. Subsequently, one of our co-

authors with authorized access to the secure facility ran the code

on real data. Only aggregated results were then brought back for

analysis. Any personally identifiable information from customers

(e.g., IP addresses) was expunged or coded before records were

exchanged. The User ID in the logs is an internal number unique

to each subscriber, and is not directly linkable to any personally

identifiable information (e.g., IMSI or phone number). Although a

correspondence table may exist at the mobile carrier, we did not

need it, and did not access it.

3.2 HTTP Log Processing
We define a browsing session (or, simply, a “session”) as a temporally

contiguous set of HTTP requests made by the same user. We con-

sider a session effectively terminates when either 1) the associated

user-agent changes (denoting the user switched browsers), or 2) the

user is idle—i.e., does not engage into a subsequent HTTP request—

for more than 20 minutes; we chose this specific parameter to be

consistent with prior work on “click streams” [85]. (We varied this

threshold in pilot experiments, and did not observe considerable

changes in the 5- to 20-minute range). We point out that the goal of

sessions is not to faithfully reconstruct users’ web-surfing activity

on their devices [88], but rather to define continuous windows of

time in which users are surfing the web.

A small fraction of HTTP requests (<2.2%) in our dataset origi-

nated from traditional operating systems (e.g., Windows, Mac OS,

. . . ), connected to the network via tethering. We did not treat this

traffic differently from other traffic, as our proposed methods are

not limited to mobile devices, per se.
We initially marked each HTTP request as malicious or not based

on a check of the Google Safe Browsing v3 (GSB, [31]) database.

We will explain how we overcome some of the limitations of this

approach—notably the fact that malicious URLs may not yet be



in the GSB at the time of browsing—in Section 4. Because the

GSB database is highly dynamic (entries are added and subtracted

every day), we downloaded daily snapshots of the GSB database

throughout our measurement interval. Specifically, for every hash

prefix available in GSB on a given day, we queried the GSB API [31]

to download the full hashes that start with the prefix.

GSB distinguishes between phishing and malware URLs. The

former purportedly entice users to reveal private information, while

the latter attempt to deliver unwanted programs to users’ devices [31].

In practice, we noticed that certain entries that are labeled as phish-

ing by GSB may lead users to download malicious software or

extensions, while others may lead to ad- and click-fraud pages.

Such entries can be construed as malware, as they may harm the

users’ devices or online (e.g., ad) services. In fact, using Virus-

Total [15]—a popular service that combines reports from several

blacklists—we found that 20 out of 25 randomly sampled domains

that are classified as phishing by GSB are also classified as malware

by one or more other lists. For example, hxxp://applicationg29.com,

which was previously classified as a phishing domain by GSB, leads

to a page for downloading a fake anti-virus when visited with cer-

tain URL parameters. Hence, the distinction may not be as critical

as we originally thought; both types of URLs are harmful to the

user, and potentially to online services. For the rest of this paper,

we consider all entries as malicious.

We also divided URLs visited upon each HTTP request into cate-

gories (e.g., news, sports, ...). To do so, we relied on the taxonomy

developed by DigitalArts, the main filtering provider in Japan, for

their i-Filter filtering system [39]. Using manually labeled domains

by DigitalArts, we trained a Convolutional Neural Network [92] to

classify domain names into one of 99 topics. The neural network

achieves ∼90% accuracy in assigning URLs to the correct topic. Fi-

nally, we classified users between exposed and unexposed. Exposed
users visited malicious pages (per the above definition) at least once

during our collection interval; unexposed users did not.

3.3 Online Survey
A contribution of ourwork is to validatewhether users’ self-reported

responses to computer-security surveys can help predict their be-

havior. Specifically, we are interested in exploring whether survey

answers can predict users’ exposure risk. To this end, we asked

users who consented to participate in this research to respond to

an online survey.

Recruitment. In June 2017, we invited 600,000 people drawn from

the pool of eligible, customers (i.e., those who opted in to having

data collected) to participate in a research survey. All customers

were based in Japan. As an incentive for customers to respond, we

offered them the chance to enter a drawing towin a 500 JPY (roughly

equivalent to $5) gift card. 1,000 randomly selected respondents

received this prize.

We initially received 23,419 user responses. While the 3.90%

response rate we recorded is below response rates associated with

online surveys (thought to be in the 10–20% range [53]) it is in-

line with surveys conducted in similar online security studies (e.g.,

3.4% [48]). Furthermore, given the large population sample we

considered, a high survey response rate is unnecessary, as long as

the pool of respondents is not significantly biased.

Demographics. The pool of respondents was slightly biased to-

ward male users: indeed, 61.5% male and 38.5% female users re-

sponded. (The pool of solicited users was 55.6% male, 42.8% female,

1.6% unknown.) The respondents’ median age was 43 years, with a

standard deviation of 11.8 years. The demographics are not neces-

sarily closely tracking the overall population. For example, elderly

users might prefer traditional flip or feature phones rather than

smartphones. Moreover, due to ethical reasons and the difficulty

of acquiring guardians’ consent, our pool of respondents excludes

minors below 18 years of age. With this in mind, the demographics

of our respondents mirror those of our solicited users fairly closely,

showing no specific evidence of bias.

We were unable to immediately assert the proportion of iOS and

Android users among respondents, since we did not collect this

information in the survey responses. We elected not to perform

user-agent matching after the fact, as it would have been very noisy:

while Safari andGoogle Chrome users on iPhone andAndroidmight

be classified relatively accurately, numerous other browsers may

not use user-agent strings very representative of the platform on

which they run.

Finally, we eliminated responses that did not pass attention

checks. This yielded valid answers from 20,895 distinct users.

Questions. Besides demographic questions (gender and age), we

asked participants a number of behavioral questions. We speculated

that self-reported behavior is correlated with actual behavior based

on prior evidence. The behavioral questions we inquired about are:

(1) Whether users have encountered security incidents (e.g.,

stolen password). Suffering from security incidents is often

correlated with users’ advice sources [64], and hence might

affect their behavior.

(2) Whether an anti-virus is installed on users’ devices. Users

running anti-viruses might be more likely to engage in risky

behavior [14].

(3) The types of app marketplaces usually used. Participants

had the option to select official (e.g., Google Play), mobile

providers’, or other, unofficial, marketplaces. Prior work has

shown that unofficial marketplaces contain a high fraction

of malicious apps [94]. Thus, we expected users who use

such marketplaces to engage in more risky behavior.

(4) What step(s) the participants take their browsers warn them

about a malicious webpage (e.g., always proceed, . . . ). We

showed participants the Chrome warning page. As Chrome

has the largest market share among browsers [77], partic-

ipants are most likely to be familiar with it. We expected

participants who proceed on warning to be at higher risk.

(5) Participants’ responses to the proactive awareness sub-scale

of RSeBIS. Participants with high proactive awareness scores

are less likely to fall for phishing than others [21]. Thus, we

expected high-scoring participants to also be at lower risk

of visiting malicious websites.

(6) Participants’ self-confidence in their computer security knowl-

edge. We used the questions from Sawaya et al. [73] to mea-

sure self-confidence in security knowledge. We expected

confident participants to exhibit more secure behavior.

We provide the entire survey in Appendix A. Since the users are

based in Japan, we ran the survey in Japanese. For the proactive

hxxp://applicationg29.com


awareness sub-scale and the self-confidence questions, we used

the RSeBIS Japanese translation of Sawaya et al. [73]. Other sur-

vey questions were translated by computer-security experts in our

group who are fluent in both English and Japanese.

4 EXPOSURE TO MALICE
We next delve into the analysis of the HTTP logs. This analysis

has three goals: (1) to determine to what extent mobile users are

exposed to malicious content, (2) to demonstrate that there is a

“window of opportunity” for miscreants to compromise devices

before a page is blacklisted, and document plausible sizes of that

window, and, (3) to explore differences in behavior across several

dimensions between exposed and unexposed users. The analysis

will serve as the bedrock for feature engineering in the predictive

models we build and evaluate in Sec. 6–7.

4.1 Overall Prevalence of User Exposure
As discussed in Section 2, there is some disagreement in the research

community regarding the actual prevalence of malware in the mo-

bile ecosystem. Specifically, previously reported results [49, 82]

differ by several orders of magnitudes in their estimates. This moti-

vates our own investigation based on the logs we collected.

Among the 20,645 users for whom we have HTTP logs (between

April 1, 2017 and June 30, 2017), 2,172 (11%) users accessed a mali-

cious page at least once and were thus exposed. Most of these users

(1,995) were exposed to pages that GSB classifies as a “phishing”

page; 153 users were exposed to “malware” pages, and 24 users were

exposed to “malware” and “phishing” pages. The GSB database also

features entries for “unwanted” pages, but none of our users appear

to have landed on such pages. Overall, the exposed users visited

3,491 unique malicious pages on 201 different domains.

In short, at least 0.81% of all users (those visiting “malware” or

“malware and phishing” pages) were exposed to confirmed malware.

We cannot, however, estimate the fraction of exposed users that

were actually infected. Indeed, these users might have been pro-

tected by an anti-virus, or other content filters. More interesting

to us is the fact that a considerable (11%) fraction of all users ac-
tually get exposed to questionable content, further motivating our

research in attempting to prevent such exposure in the first place.

4.2 Window of Exposure
We next estimate the amount of time users might be exposed to

malicious pages while defenses may not yet be in place. Our ap-

proach is similar to a prior approach to measure the preponderance

of zero-day exploits in the wild, by retroactively checking evidence

of malware signatures in telemetry data dating back to times before

these signatures were known to anti-virus companies [8].

Similarly, we check if we observe logs of accesses to URLs before

these URLs were included in the GSB database. Fig. 1 plots, as a

function of time, the number of accesses to pages present in the

GSB database during our measurement interval (April 1, 2017–June

30, 2017). Negative x-axis values denote accesses to a page before
it was included in the GSB database, while positive values denote

accesses occurring after inclusion.

We immediately point out that our analysis presents some limi-

tations. First, because we work with a finite, 91-day interval, there
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Figure 1: Total number of accesses to malicious pages as a function
of the number of days to pages’ first observation in GSB. The plot is
stacked. Negative x -axis values indicate possible exposure to mali-
cious pages not yet in GSB.

is only one possible day for us to observe a URL being accessed

90-days prior (resp. after) inclusion in the GSB: the first (resp. last)

day of our measurement interval. Conversely, there are 90 days

during which we can observe an access one-day prior (resp. after)

inclusion in the GSB. Thus, values closer to 0 on the x-axis of our
plot will be over-represented. To account for this imbalance, we

normalized all y values by dividing them by the number of days we

could actually observe them—dividing the y-value corresponding
to x = 0 by 91, the y-values corresponding to x = ±1 by 90, and

so forth. For the sake of brevity, we omit this plot here: the overall

shape of the curves does not markedly change.

Second, we can estimate that a page ceases to be malicious when

it is removed from the GSB database. However, we do not know

when a page starts being malicious. In the best case, it could be on

the day it was included in the GSB, in which case prior accesses

would not be problematic. In the worst case, it could have been

malicious more than 91 days prior to inclusion, in which case, all
of the accesses we observe would be problematic.

With these caveats in mind, it is striking to see that certain

deceptive pages were accessed a full 87 days before inclusion in GSB

(leftmost point on the graph). We observe a first increase in accesses

to malicious pages 38 days before inclusion in the GSB database,

and a second increase 22 days before inclusion in GSB. We further

observe a large spike two days before inclusion in the database—

intuitively, an increased number of accesses to a malicious page

increases its likelihood of being flagged by GSB, but at the same

time, a large number of users are exposed to the page.

Unsurprisingly, we observe an immediate overall drop-off after

inclusion in the GSB database, which shows that GSB-based mitiga-

tions appear to be quite efficient. Nevertheless, we do see a number

of accesses even after a page has been included. These accesses

could be due to users ignoring warnings, or to their browsers not

using the GSB database to filter access. Particularly interesting to

us is that accesses to malware-infested pages do not seem to sig-

nificantly decrease after inclusion in the GSB database. This could

plausibly indicate that users are deliberately visiting such pages

(bypassing defenses in the process), or that, once infected with

malware, a device keeps on (unbeknownst to the user) requesting

HTTP content from malicious locations.



We observed close to three months of potential, unprotected

exposure, to malicious pages, which could have led to successful

infections or credential theft. The probability of exposure increases

sharply about three weeks prior to pages’ blacklisting, and even

more sharply in the couple of days prior to inclusion. To summarize:

Finding 1. There is evidence of non-negligible delays—potentially
in the order of days or weeks—in certain pages being flagged as mali-
cious by GSB.

These measurements demonstrate the limits of defenses purely

based on blacklists such as the GSB database, and motivate the need

for additional proactive measures such as the ones we propose in

this paper.

4.3 Behavioral Differences Between Users
Next, we are interested in using our logs to explore any differences

in behavior between exposed and unexposed users. The idea is

that such differences could be critical in identifying risky behavior,

which we could then use for feature engineering in the design of a

predictive classifier. Here, we are only concerning ourselves with

empirically-measured differences—we do not (yet) integrate any

data from our surveys.

Defining Malice. Ideally, we would be able to identify precisely

when a user gets exposed to a malicious page, and we would be

able to characterize her behavior long before, immediately prior to,

and after exposure. This would in turn help us determine possible

deviations that could be indicative of increased risk immediately

prior to exposure, and characterize whether an infection might have

occurred post-exposure (e.g., if we notice drastically different net-

work access patterns). Unfortunately, we have no way of knowing

precisely when a user is exposed. We know when a user requests a

given page, and we know when that page is flagged as malicious

by GSB, but, as discussed above and shown in Fig. 1, we do not

know when the page actually turns malicious. For that reason, we

parameterize the notion of a malicious page.

Definition 1. τ -malicious page: Consider a user making an
HTTP request to a URL u at time t . URL u is deemed τ -malicious if it
appears in the GSB database at any time t ′ such that t ≤ t ′ < t + τ .

τ -malicious pages are webpages that may currently be flagged as
benign, but that will (within τ ) be marked as malicious. The smaller

τ is, the higher the danger, as the probability that the page is in fact

already malicious increases as τ → 0.

Mathematically, using τ = 0 (resp. τ → ∞) would underestimate

(resp. overestimate) the number of malicious pages—the “true” value

for τ actually depends on each URL. Based on the results shown in

Fig. 1, it appears fruitful to study behavioral differences between

users exposed to τ -malicious pages for τ ≥ 87 days (oldest plausible

appearance of a malicious page before it was labeled as such), τ =
22 days (when number of accesses to webpages ultimately deemed

malicious starts to significantly pick up), τ = 2 days (when the

spike in accesses is the highest), τ = 0 days (when malice has been

confirmed), and unexposed users.

Exposure Events. Fig. 2 shows the number of requests to malicious

pages for each exposed user for various definitions of a malicious

page, ranging from τ = 0 to setting τ to themaximum value possible

(91 days, the size of the measurement interval).
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Figure 2: Number of requests (left) and sessions (right) to malicious
pages for exposed users. For readability, we truncate the figure at 20
requests or sessions, even though a small fraction of users (< 0.1%)
request far more.

Depending on the value of τ , between a third to half of our

exposed users access only one page deemed malicious; for positive

values of τ , more than a quarter of our users make three or more

requests to malicious pages. Fig. 2 indicates that, for positive values

of τ , half to two-thirds of the exposed users perform all exposed

requests within a single session depending on the value selected

for τ ; the remainder shows a long-tailed distribution. As the figure

shows, this behavior is generally robust to changes in the value

of τ we select, although, in line with Fig. 1, τ = 0 seems overly

conservative.

The limited number of exposure events for a third to half of our

population motivates the need for short-term, in-session predictions
for each user.

Finding 2. A predictive classifier cannot purely rely on previous
exposure, since a significant share of our user corpus shows a lack of
“repeat” exposure.
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Figure 3: Probability of future visits to malicious pages based on
the number of past requests to malicious pages. The overall trend
is relatively independent of τ . Curves for τ = 22 and τ = max are
overlapping.

Next, we calculate, in Fig. 3, the probability that an exposed user

who accessed malicious pages at least x times in the past, will access

a malicious page in the future. Namely, Fig. 3 reports the empirical

estimate of Pr [A(x + 1)|A(x)], where A(x) denotes the event that
a user visited at least x malicious pages. Here too, we vary τ . We

find that:
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Figure 4: Differences between exposed and unexposed users. Ex-
posed users tend to make far more requests, and engage in longer
sessions thanunexposed users. Kolmogorov-Sminov (KS) tests show
that the differences between exposed and unexposed users are sta-
tistically significant (p-value <0.01).

Finding 3. The more users got exposed in the past, the higher the
probability they will get exposed again.

This finding substantiates that, while prior exposure by itself is

insufficient (see Finding 2), short-term predictions can nevertheless

benefit from long-term inputs, using prior exposure as a feature.

Namely, this measurements motivates the need for combining short-

and long-term reasoning, which will be our core contribution.

Session-Level Metrics. We next investigate the differences in the

level of activity between exposed and unexposed users. Fig. 4(a) (in

logarithmic scale on the x-axis) shows that, regardless of the value
chosen for τ , unexposed users generally request far less pages per

day than exposed users. We observe a similar trend for sessions—

unexposed users engage in considerably less sessions than exposed

users. Finally, Fig. 4(b) exhibits clear differences in session lengths:

unexposed users engage in usually shorter sessions than exposed

users. Here too, the result is robust to the value of τ we choose. In

short, irrespective of the value τ chosen, we see that:

Finding 4. Exposed users are more active than unexposed users—
they make more HTTP requests, and engage in more, longer, browsing
sessions.

These variables will thus play an important role in a predictive

classification model.

Diurnal and Weekly Effects. We next look into the amount of

requests by exposed and unexposed users through the day by the

hour, as shown in Fig. 5. To meaningfully compare the different

classes we perform “feature scaling,” i.e., we normalize each value to

a [0, 1] range, where 0 represents the minimum number of requests

from a given type of user per day, and 1 is the maximum number

of requests.

All requests in our corpus occur on the same time zone (JST).

Both behaviors are relatively similar and demonstrate time-of-the-

day effects: people browse the Internet most during lunch time, and

the early morning (midnight-4am) is the quietest time of the day.

However, it seems that exposed users tend to request data more

evenly throughout the day; in particular, the gap with unexposed

users is most pronounced in the evening. Canali et al. found similar

differences when analyzing user browsing on traditional operating

systems [10]. We conjecture this may be due to a combination of
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Figure 5: Scaled number of requests by type of user over the day.
Due to imbalance in the absolute numbers among classes, we use a
[0, 1] feature scaling. Exposed users are more active at night time.
KS tests show that the differences between exposed and unexposed
users are significant (p-value <0.01).

exposed users 1) browsing the Internet more often than unexposed

users overall, and 2) potentially browsing riskier websites in the

evening than when they are at work.

Finding 5. Exposed users tend to browse the Internet more fre-
quently at night and outside of working hours.

Thus, time-of-the-day might be a useful feature to look at for

our predictive classifiers. For the sake of brevity, we do not present

a plot here, but we found a similar behavior relating to activity

levels throughout the week: exposed users tend to be more active

on week-ends than their unexposed counterparts. We will thus also

consider day-of-the-week as a potential predictive feature.

Webpage Categories. Finally, motivated by prior findings that

certain types of webpages present higher risks of infection than

others [45, 61, 87], we posit that certain categories of webpages

may be more strongly correlated with exposure risks. For exam-

ple, Fig. 6 shows the proportion of advertising and adult webpages

for unexposed and exposed users. Although we might overlook

some requests to advertising pages due to our logs ignoring, e.g.,

JavaScript, we observe that exposed users tend to access adver-

tising pages with a higher frequency than unexposed users. The

same is true for adult content. More generally, we find that exposed

and unexposed users access webpages of 65 categories out of the

99 at different frequencies (these differences are statistically sig-

nificant with p-value < 0.05 according to Kolmogorov-Smirnov

tests, after Bonferroni correction). Exposed users are more likely

to access webpages of 19 categories (e.g., adult, advertising, and

video-search webpages), while unexposed users are more likely

to access webpages of 46 categories (e.g., education, financial, and

news webpages).

Finding 6. Certain categories of content may be indicative of
higher risk exposure.

We thus might want to use website category as a feature in our

predictive classifier.

Take-Aways. As a major take-away from this set of measurements,

exposed and unexposed users clearly show differences along a

number of metrics. We will use these differences in the remainder

of the paper to devise proactive defenses. Another important take-

away is that the notion of “exposure” itself is highly dependent on
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Figure 6: Fraction of page requests of a certain type over all re-
quests. Exposed users tend to request more advertisement (left) and
adult (right) pages than unexposed users. The differences between
exposed and unexposed users are significant according to KS tests
(p-value <0.01).

what is considered malicious. We have seen that blacklists such as

the GSB database appear to lag a bit behind actual deployment of

malicious pages, and have introduced the notion of τ -exposure—the
user is exposed to a page that will be labeled as malicious within τ
days. Measurements indicate that τ = 2 seems to be a reasonable

compromise: larger τ would probably encompass pages that were

not actually malicious at the time of browsing, but smaller τ would

likely miss dangerous pages.

5 SURVEY RESPONSES AND EXPOSURE RISK
We now turn to determining whether we can accurately predict

the risk of a compromise to a given individual. We start from a

general perspective: can we establish meaningful insights on users’

exposure risk from survey responses? If so, we could use these

insights to complement the system-level metrics we collect, and

improve performance of our proposed predictive schemes.

In essence, we aim to explore the relationship between a binary

dependent variable (whether users are exposed) and a mix of cate-

gorical (e.g., whether an anti-virus is installed) and continuous (e.g.,

proactive awareness score) variables. To this end, we build a logis-

tic regression model (a popular tool for modeling the relationship

between various explanatory variables and a binary outcome [74])

to determine the influence of the different variables our survey

captures on user exposure risk.

For each explanatory variable, logistic regression assigns a co-

efficient that estimates the change in the log odds-ratio of the

dependent variable. In other words, the coefficients estimate the

change in ln
(

p
1−p

)
, where p is the probability of the user being at

risk. For example, if the coefficient of the binary variable indicating

whether a user reported to have an anti-virus installed is estimated

to be β > 0, then the odds of visiting malicious sites are eβ times

higher for users who report to have an anti-virus on their device

than those who do not. Alternately, if β is negative, then the odds

of being at risk decrease for users who have an anti-virus.

5.1 Experiment Design
We use the three-month worth of HTTP requests we collected, and

the survey responses to build the logistic regression. Using τ = 2

Table 1: Parameter estimates for the logistic regression model.
Shown: log odds-ratios of variables, their odds-ratios, and the p-
values for H0 that the odds-ratios are equal to 1.

Parameter β eβ p-value

(Intercept) -1.97 0.14 <0.01

Is female? -0.50 0.54 <0.01

Proactive awareness -0.20 0.82 <0.01

Proceeds on browser warning? 0.23 1.26 <0.01

Suffered from compromise? 0.51 1.67 <0.01

Uses anti-virus? 0.92 2.51 <0.01

Uses unofficial app marketplace? 0.16 1.17 <0.01

we identify which users are exposed from the HTTP requests—

exposure will serve as the dependent variable in the regression. The

independent variables are constructed from the survey responses.

Specifically, we compute the following variables: (1) Gender; (2)

Presence of an anti-virus on the user’s device; (3) Whether the

user downloads apps from unofficial marketplaces; (4) Whether

the user proceeds on browsers’ warnings; (5) Whether the user

reports having suffered from a compromise; and (6) the RSeBIS

proactive awareness score (via summing the users’ responses to the

Likert-scale questions and normalizing to [0, 1] range). Variables

(1)–(5) are binary; (6) is continuous.

We exclude age and self-confidence in security knowledge from

the regression—exploratory data analysis did not indicate corre-

lation between age and exposure; and we wanted to avoid mul-

ticollinearity in the regression due to the correlation between

self-confidence in security knowledge the proactive awareness

score [73].

We use Python’s statsmodels package to build the regression

model [41]. To select the best model, we begin from all possible

interactions between the variables and perform backward model

selection by removing interactions until the model’s likelihood

does not decrease much (particularly, the decrease in the Bayesian

Information Criterion becomes lower than two, as standard [74]).

5.2 Experiment Results
The parameter estimates of the model with the best fit are reported

in Table 1. While none of the interactions survived model selection,

all the main factors in the model were found to have a significant

effect on exposure at a significance level p < 0.01. Notably, the

model estimates that women are 0.54 times as likely as men to visit

malicious URLs. Prior work showed that women are less likely to

detect deceptive, malicious, webpages [75], but this finding shows

that women may be less likely to encounter such webpages in

the first place. Participants who have suffered from compromise

have an increased odds of exposure to malicious content by 1.67

times. This further corroborates Finding 3 that users with prior

exposure have higher probability to be exposed again. Similarly, the

parameter estimates show that risky behavior, such as proceeding

on browser warnings, and using unofficial marketplaces for mobile

apps, increase the odds of exposure to malicious content by at

least 1.17 times, on average. This aligns with our expectations. In

contrast, and somewhat surprisingly, having an anti-virus is the

factor that is most correlated with exposure—users who reported



to have an anti-virus were 2.51 times more likely than others to

visit malicious URLs. We hypothesize that these users have a false

sense of security that leads them to engage in a high-risk behavior—

something that was previously observed by others [14]. It may also

be the case that the users installed an anti-virus in response to a

past exposure. Finally, users who achieved full proactive awareness

score on RSeBIS were 0.82 times as likely as those who achieved

the lowest score to visit malicious URLs, supporting prior evidence

that the scale correlates with certain security behavior [11, 21, 22].

Our analysis provides insights into how self-reported informa-

tion correlates with actual exposure to malicious content, and how

different types of information collected via self-reporting differ

in their importance. Yet, the best model we could build using the

data we asked about can explain only 5% of the variance (i.e., the

R2 = 0.05). Thus, despite being rather diverse and certainly helpful,

the self-reported information we considered may be insufficient

by itself to fully explain exposure to malicious content online. We

have to complement it with other features, as shown next.

6 LONG-TERM PREDICTION OF EXPOSURE
Nowwemove from exploring the relationship between self-reported

information and exposure to predicting exposure. In particular, we

evaluate predictive models that leverage self-reported answers to

surveys, past behavioral observations, or both to predict user ex-

posure over a relatively long time period (specifically, one month).

Here, as opposed to the previous section, models that rely solely on

survey responses help us estimate how accurately can self-reported

data predict exposure. Additionally, models that rely on past behav-

ioral observations of users help set a baseline to evaluate the utility

of self-reported data for prediction.

6.1 Classifier Design
Self-Reported Features. From the survey responses, we extract

seven features for prediction. Six of the features are the same as

described in Sec. 5.1. The seventh denotes users’ self-confidence in

their security knowledge (computed via summing the responses to

the Likert-scale questions then normalizing to the [0, 1] range).

Past-Behavior Features. Themain premisewhen using Past-Beha-

vior Features is that past behavior is indicative of future one (e.g.,

users who visited malicious domains in the past are likely to visit

malicious domains in the future [10]). The features that we develop

are motivated by the findings of Sec. 4 regarding the differences

between exposed and unexposed users. Some of the features quan-

tify the user’s amount of activity per day: average number of ses-

sions and HTTP requests, average number of bytes uploaded and

downloaded, and average session length in seconds and number of

requests. Two features are used to estimate the amount of past expo-

sure: One feature indicates prior exposure, and another quantifies

the fraction of previously exposed sessions. 24 features summarize

the level of activity during different hours of the day, and 99 features

describe how previous HTTP requests are distributed among the 99

topics of DigitalArts [39]. Finally, one feature reports the fraction

of request to domains not in the Alexa top 100,000 websites. The

premise behind the last feature is that top websites are unlikely to

be malicious or to link to malicious content. Overall, we use 132

Past-Behavior Features.

Table 2: Summary of the classifiers’ design.

Long term (Sec. 6) Short term (Sec. 7)

Classifier Random Decision Forest Conv. neural network

Input Past-Behavior and/or

Self-Reported features

Contextual, and, possi-

bly, Past-Behavior and/or

Self-Reported features

Output Probability estimate of

user exposure

Probability estimate of

exposure within session

Class balance 18:82 0.1:99.9
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Figure 7: ROC curves for long-term predictions. Left: the effect of
the threshold (as a number s of previously exposed sessions) using
all (PS ) features. Right: the effect of the various feature sets, using
a threshold of s = 4 sessions.

Prediction Algorithm. We use Random Decision Forests [37], a

popular machine-learning algorithm, to perform predictions. For

best performance, we set the number of classification trees to 50,

the maximum height to 5, and weigh negative examples by ×0.1

the weight of positive ones. We also experimented with other clas-

sification algorithms, but they did not perform as well. Table 2

summarizes the classifier’s design.

6.2 Experiment Design
Essentially, the question that we aim to answer is: based on users’

self-reported data and/or browsing behavior in a specific month,

can we predict exposure in the following month? To answer this

question, we use our data to train Random Decision Forests to

predict exposure in May (τ = 2) using observations made in April,

and evaluate how well these models can predict exposure in June

via observations made in May. We perform ten-fold cross-validation

rounds in which we use 90% of users for training and 10% of users

for testing.

6.3 Experiment Results
Fig. 7 shows the overall classifier performance as a function of two

parameters. Using our complete feature set (Self-Reported and Past

Behavior), Fig. 7(a) shows the influence of the session threshold s . s
is used to denote the number of distinct exposed sessions a user has

to endure to be considered as exposed. Intuitively, the higher s , the
more conservative the notion of user exposure. In particular, with

s = 1, a user might have landed on an exposed webpage by accident;

with s = 5, on the other hand, the user is repeatedly getting exposed.



Unsurprisingly, for long-term predictions, a higher s seems to work

better. Fig. 7(b) shows the impact of both feature sets: S denotes the

impact of self-reported features, P , that of past-behavior features,
and PS the impact of considering both sets. As expected, the whole

set (PS) achieves the best results, but more interestingly, the impact

of the Self-Reported Features by themselves is very modest. While,

in isolation, Self-Reported Features might be useful (e.g., if user

monitoring is not an option), the Past-Behavior Features achieve

much better performance on their own; and combining them with

the Self-Reported Features does not yield a great improvement.

Our long-term prediction system performs slightly worse than

Canali et al.’s system [10]. However, we use a far more restricted

set of features: our data collection is less intrusive, we only col-

lect text/html content, and most importantly, our features are con-

siderably cheaper to compute (e.g., most can be computed using

counters).

Regardless of the accuracy of long-term predictions, they are

not a panacea—recall from Sec. 4 that many users are actually only

exposed once or twice (Finding 2). This begs for an additional set of

classification primitives, that attempt to prevent exposure on much

shorter time intervals.

7 WITHIN-SESSION EXPOSURE PREDICTION
We next explore the feasibility of predicting whether a user will

engage in risky behavior (namely, visiting a malicious website)

during a single browsing session. Thus, we aim to use contextual

features that describe the session at some stage, to predict whether

the user will be exposed at a later stage in the session. Each time the

user makes an HTTP request, the contextual features are updated to

describe the new state of the session, and another prediction attempt

is made. As Sec. 6 and prior work have shown, users’ behavioral

features (e.g., number of websites visited [50]) can help predict user

exposure risk over long periods of time (e.g., three months [10]).

We next show how to use similar behavioral features to predict

exposure on much shorter time scales.

7.1 Classifier Design
The prediction problem we aim to solve poses two key challenges.

First, the dataset is imbalanced—there are about 1,733 benign ses-

sions for each exposed session. Learning from imbalanced datasets

is hard, as classifiers which predict the majority class most of the

time, albeit useless, would be favored by training algorithms due to

their high accuracy [36]. We address this challenge by undersam-

pling the majority class during training. Other methods propose to

oversample the minority class (e.g., SMOTE [13] and ADASYN [35]),

but we did not find them useful. Second, browsing sessions contain

large numbers of HTTP requests. Thus, the prediction algorithm

and the feature computation need to be highly efficient to be de-

ployed in real-time. We thus design features that can be efficiently

updated after each HTTP request, and rely on a compact neural

network for prediction.

Contextual Features. From the observations presented in Sec. 4,

we develop a set of session-level features to predict whether a

sessionwill become exposed. In essence, the Contextual Features are

similar to the Past-Behavior Features from Sec. 6, but are computed

over the course of the session, rather than over the entire historical

observations we have about the user.

Since exposed sessions tend to have a higher amount of activity,

features quantifying magnitude of activity are a good proxy for our

predictions. These include session length (in seconds), number of

HTTP requests, and amount of bytes transferred during the session.

Malicious domains are less likely to be (directly) linked to from

top-domains. So, we use the fraction of HTTP requests to non-top

domains (i.e., outside the Alexa top-100,000) as another feature.

Exposed sessions are more likely to occur in the weekends, and

late in the day (Finding 5). We thus use a feature to indicate whether

the session is taking place during the weekend, and 24 features to

indicate the hours in which the session has been active.

Six binary features indicate the operating system and the browser

observed in the session (as learned from the user-agent strings in

HTTP headers): Two of the features indicate Android and iOS

(the two most popular mobile OSes [80]), two features indicate

the use of Chrome and Safari (the most popular browsers [77]),

and two features are used to indicate other OSes and browsers

(e.g., Firefox OS). While our exploratory data analysis and prior

work [49] did not indicate stark differences in the risk profile of

different systems (e.g., iOS vs. Android), these features could help

capture the subtle differences between systems (e.g., how often

browser blacklists are updated) that could affect users’ exposure.

Last, 99 features describe the topics of domains visited in the

session. As prior work has shown, and in line with Finding 6, cer-

tain website categories (e.g., online streaming [61]) tend to exhibit

more malicious activity than others. Hence, visits to such websites

are likely to increase the likelihood of exposure. The features we

developed reflect the distribution of domains in the HTTP requests

among the 99 Digital Arts categories [39].

All 135 contextual features we use can be computed efficiently

throughout sessions via counters and table lookups. Some of the

models presented in this section also rely on the Past-Behavior

and Self-Reported Features from Sec. 6. For a given session, we

compute the Past-Behavior Features using the user’s history up to

the beginning of that session. Once the session is over, we update

the Past-Behavior Features based on the observations made during

the session.

Prediction Algorithm. We use convolutional deep neural net-

works (DNNs) to perform predictions [30]. DNNs can achieve state-

of-the-art performance on many different tasks ranging from image

classification [7] to speech recognition (e.g., [70, 89]) to playing

Go [16]. Besides their high performance, DNNs are practically use-

ful when training with large datasets as their parameters can be

learned iteratively using small batches of data.

We train DNNs using data from the early parts of our collection

and evaluate them using data from later parts. As the goal is to pre-

dict exposure to malicious content before the exposure takes place,

HTTP requests in exposed sessions that are made to or after the

visits of malicious URLs are disregarded. We create a feature vector

for each HTTP request in the training set. We assign a positive label

(i.e., 1) to HTTP requests that belong to exposed sessions, and a

negative label (i.e., 0) to the remaining requests. During the training

process we do not use HTTP requests in exposed sessions that are

made more than one minute before the moment of exposure. This



apparently improves performance, possibly because requests that

are made long before exposure takes place are unlikely to play an

influential role in the exposure.

Additionally, both in training and testing, we disregard the first

nine HTTP requests of each session. These requests are needed to

create context about the browsing sessions and to bootstrap the

Contextual Features. In other words, we perform predictions only

for sessions with more than nine requests. Consequently, we only

keep sessions with more than nine requests for training and testing

(these include ∼96% of all exposed sessions). Using Selenium [18]

and tPacketCapture [79], we crawled the Alexa top 100 HTTP-only

websites on an Android phone, and found that, on average, two

website visits correspond to ten HTTP requests. So, our proposed

system would begin analyzing a user browsing activity after she

has visited two websites, on average.

In each training epoch of the DNN, to address dataset imbalance,

we only use a random subset of the negative examples for training,

such that the number of positive and negative samples is equal [36].

At test time, we classify a session as exposed only if the feature vec-

tor describing the state of the session at a certain stage is classified

as positive.

The DNNs we use are sequential, and consist of three convo-

lutional layers, each followed by a Rectified Linear activation, a

fully-connected layer, and a softmax layer. The convolutions use

5× 128 kernels, and are applied with a stride of one. In training, the

DNNs’ the cross-entropy loss is minimized. This is a standard choice

of architecture and training strategy [29, 30, 68]. Before selecting

the convolutional architecture, we initially tested a neural network

architecture consisting of fully-connected layers only, finding it to

perform less accurate predictions.

We normalize the DNNs’ inputs to a [0, 1] range using statistics

learned from the training data, as normalization helps to speed up

training and improve performance [17]. We set the learning rate

to 5 × 10
−5
, the batch size to 128, and the number of epochs to 50.

We performed a grid search to set the hyper parameters, optimize

depth of the DNNs, and the size of the convolution kernels. We

implement the DNNs in Keras [43] (with a TensorFlow backend [1]).

Table 2 summarizes the predictor’s design.

7.2 Experiment Design
We trained several DNNs to predict whether sessions will become

exposed. Since we empirically found that models that are trained

using data collected over the range of 15 consecutive days perform

well when used for prediction in the five days that follow, we

picked different periods of 20 days each (of which the first 15 days

were used for training, and the last five for testing) to evaluate our

approach. Specifically, we used five different periods of 20 days that

were uniformly spread over three months of our data collection,

starting from April 5th, 2017. We did not start from April 1st so that

we can use the first days of April to observe the behavior of users

and initialize the Past-Behavior Features to a meaningful state.

Similarly to Sec. 4.3, we considered a page to be malicious if

it had been in GSB, or appeared in GSB within two days or less

from the time it had been accessed by a user (i.e., we set τ = 2).

This required special care when training the DNNs. Specifically,

when training a DNN at time t , one cannot tell if accesses in the

interval t − τ + 1, . . . , t appeared in GSB within the time interval

t + 1, . . . , t + τ . Thus, to avoid mislabeled data in our training, we

exclude HTTP requests made in within t −τ +1, . . . , t from training

(in our case, we exclude HTTP requests made in t − 1 and t from
training).

To speed up the training process and minimize the use of private

information, we uniformly sampled the HTTP requests of unex-

posed sessions during training. Specifically, we used only 5% of

HTTP requests of unexposed sessions in training. We avoid sim-

ilar sampling of HTTP requests belonging to exposed sessions,

as their absolute number is relatively small. Overall, to train the

DNNs, we used ∼3,200,000 requests from unexposed sessions and

∼43,000 requests from exposed sessions, per evaluation period For

testing, we had an average of 412,005 benign sessions (contain-

ing ∼21,620,410 requests) and an average of 277 exposed sessions

(containing ∼19,457 requests), per evaluation period.

7.3 Experiment Results
We first tested how accurately do the DNNs predict exposure in

advance. Specifically, we measured the true-positive rate (TPR; the

rate in which exposed sessions were classified as exposed) and

the false-positive rate (FPR; the rate in which unexposed sessions

were classified as exposed) of the DNNs at different times before

exposure. In these experiments we used all the features: Contextual,

Past-Behavior, and Self-Reported.

Fig. 8(a) and Fig. 8(b) summarize the results. They show that the

DNNs can predict exposure with good accuracy. E.g., if the aim

is to predict exposure at any time before it happens, it is possible

to achieve 87% TPR with only 20% FPR. If lower FPR is desired, it

is possible to achieve a 75% TPR with 10% FPR, or even 32% TPR

with 1% FPR. Comparable accuracy can be achieved even when

aiming to predict exposure much in advance. E.g., we can obtain a

74% TPR with 20% FPR balance even when predicting exposure 30

seconds before it actually happens. As we discuss in the following

section, we believe that such early detection opens a window of

opportunity for a diverse set of interventions that can prevent

exposure to malicious content.

We next evaluated the influence of the different types of features

on the performance of the DNNs. In particular, we evaluated the

performance of the DNNs at predicting exposure when combining

Contextual Features with both Past-Behavior Features and Self-

Reported Features, only Past-Behavior Features, only Self-Reported

Features, or none. The results are shown in Fig. 8(c). The accuracy

of predictions is roughly similar in all cases—Contextual Features

slightly benefit from Past-Behavior Features, but the interaction

with Self-Reported Features turns out to be slightly detrimental.

Shortly stated, Contextual Features by themselves are sufficient

to accurately predict exposure over the short-term. Hence, accu-

rate within-session predictive engines may be developed without

the need to collect and store historical behavior information or

self-reported user input (which can be expensive and time consum-

ing), but rather via simply using available contextual information

describing users’ browsing activity.

False Alarms and Baseline Rate. There is a pronounced im-

balance between exposed and unexposed sessions. For example,

consider the operating point TPR=56% and FPR=3% in Fig. 8(a),
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Figure 8: ROC curves for short-term, within-session predictions. The curves are averaged between the five evaluation periods. (a) Performance
at different times before exposure (all features are used). (b) Is a zoomed-in version of (a). In (a) and (b), the dots correspond to example
operating points under the more inclusive ground truth (considering pages eventually flagged as malicious), over the five timing horizons
considered. (c) Performance when using different types of feature combinations (C : Contextual Features; P : Past-Behavior Features, and S :
Self-Reported Features).

which can be achieved when using all features, and predicting ex-

posure at any time before it happens. While the performance is

significantly better than a random predictor (where FPR=3% yields

TPR=3%), the low baseline exposure rate is a problem. The ratio

between exposed and unexposed sessions is roughly 0.1:99.9 (see

Table 2). At our chosen operating point, the system would make 56

true detections (out of 100) and ∼3,000 false detections for every

100,000 sessions. In other words, our system would primarily issue

false alarms, which could majorly impede deployment of active

defenses—for instance, terminating risky sessions could make the

network unusable, and issuing warnings would likely result in users

ignoring them.

Fortunately, there is evidence that many of these suspected false

positives are actually true positives. Indeed, we found that many

of the URLs that were not flagged by GSB during the time of data

collection were eventually (i.e., weeks or months later) flagged as po-

tentially malicious by either GSB or other lists that VirusTotal [15]

uses. More precisely, checking these services roughly one year after

our field measurements, we discovered ∼71% of the 3,000 “false”

positives observed at the TPR=56%, FPR=3% operating point were

eventually flagged as malicious, and thus were probably true posi-

tives.
1
Hence, the system may actually be achieving roughly 2,186

true positives and 870 false positives for every 100,000 sessions.

(This also hints that our system performs much better than relying

on blacklists with respect to false negatives.) In contrast, only 0.13%

of the true negatives (i.e.,∼130 sessions per 100,000) may actually be

false negatives. Overall, this corresponds to TPR=93% and FPR=1%

with a ratio of roughly 2.4:97.6 between exposed and unexposed

sessions. Figures 8(a) and 8(b) show several operating points under

the more inclusive ground truth—they all hover around 90% TPR

for 1% FPR.

On a machine equipped with a Xeon X5875 CPU (3.07GHz), and

128GB of memory, our system can classify ∼1,300 feature vectors

per second. Thus, assuming that one webpage visit usually accounts

for five HTTP requests on average (as we found), then our system

can serve about 260 page visits per second. We believe this can be

further optimized (e.g., via GPU computation).

1
Similarly to prior work [5], we conservatively considered a URL to be malicious only

if it was flagged by two or more of the lists that are used by VirusTotal.

8 DISCUSSION
We now discuss the implications of our findings in terms of possible

interventions that can be enabled, the utility of self-reported data

for designing interventions, and several extensions to our work.

Reproducibility is a thorny issue in our case. We cannot release

measurements for user-privacy reasons, but hope to help others

reimplement our system and reproduce our results by open sourcing

the code used for computing features, training the neural networks,

and evaluating them.
2

Possible Interventions. Our proposed short-term prediction ap-

proach may enable human-centered defenses. For instance, users

about to be exposed may be alerted (e.g., via nudging [3], or warn-

ings [26]) about possible risks much before the exposure. Giving

users sufficient time to consider their actions may improve their de-

cision making [55]. In certain networks (e.g., government/defense),

exposure to malicious content may be intolerable. Operators of

such networks may terminate the browsing sessions of users about

to visit malicious pages.

Deploying firewalls or intrusion detection systems (e.g., [60])

at the scale of a nationwide cellular network may be hard due to

increased expenses and high latencies that might affect users’ expe-

rience. A session-based exposure-prediction system like ours can

help prioritize traffic that should pass through expensive inspection,

thus enabling elastic defenses (e.g., [25]). Using deep processing, it

may also be possible to prevent the installation of third-party apps

in risky contexts. Additionally, the session-based prediction system

may be used to collect potentially malicious pages for scanning to

update blacklists, as it often predicts exposure to malicious pages

before the pages appear on blacklists (as shown in Sec. 7).

We note that in some cases the FPR may be too high for effec-

tively deploying the system in production. Indeed, when usability

is the main concern (e.g., in a general purpose network), certain

interventions, such as terminating connections or warning users,

may lead to annoyance or habituation [84] when the FPR is high. In

such cases, we suggest to tune the system to decrease the FPR (thus

also decreasing the TPR). Alternately, one may resort to more con-

servative interventions, such as identifying potentially malicious

pages for scanning or preventing the installation of 3
rd
-party apps.

2
https://github.com/mahmoods01/exposure-prediction

https://github.com/mahmoods01/exposure-prediction


We expect that future enhancements of the system would make it

effective in a wider range of settings.

Similarly to short-term prediction, long-term prediction can en-

able certain types of human-centered interventions, such as in-

creased training and education (e.g., [44]) for users predicted to

engage is long-term risky behavior.

Utility of Self-Reported Data. We developed a better understand-

ing of the utility of self-reported data for explaining and predicting

security behavior and incidents thus contributing to a growing

body of literature [21, 22, 86]. For example, users who reported

using anti-virus are much more likely than others to get exposed,

echoing previous findings [14]. While self-reported data helped

forecast long-term exposure risk, sole reliance on self-reported data

resulted in only moderately accurate predictions. To build accurate

predictive models based on self-reported data, one probably needs

to complement self-reported data with behavioral measurements

of metrics similar to those described in Sec. 4.

Potential Extensions and Limitations. Naturally, improving the

performance of our session-based apparatus would improve its

practicality. Using additional, computationally more expensive, fea-

tures (e.g., domain-name reputation [4], or redirection-graph fea-

tures [78]) that were shown to be useful for detecting malicious do-

mains may improve the performance. Machine-learning algorithms

other than the ones we explored in this work, such as recurrent

neural networks which achieve state-of-the-art results on learning

from sequences (e.g., in machine translation [6]), may also help.

Our session-based prediction approach could be extended to

networks other than cellular networks (e.g., residential or enter-

prise networks). Such networks introduce new challenges (e.g., due

to different user behavior or higher device diversity), but similar

prediction performance should be achievable.

While users should not have strong incentives to evade our

predictive models, attackers may want to “poison” the training

data [38]. Such attackers however need the ability to interact at the

scale of the (entire) exposed population of the service provider, and

thus to control a large number of devices on the provider network.

On smaller networks, this is an important issue to address.

To trust the predictive engine, users and network operators may

want to know why a session or a user are predicted to be exposed;

recent research on explaining machine-learning models [20, 66]

might be helpful.

Last, privacy concerns mandate to minimize the amount of user

data required for training the predictive models. Our (strong) sub-

sampling of HTTP requests from unexposed sessions helps, but re-

cent techniques might reduce user data collection even further [46].

9 CONCLUSION
We developed a system to predict whether users will be exposed

to malicious pages while browsing the web, and evaluated it using

three-months worth of HTTP traffic generated, in 2017, by >20,000

users of a Japanese cellular provider. We found that the system can

quite accurately predict exposure seconds before it occurs, thus

potentially enabling several proactive defenses. Our measurements

further motivated the need for such a system, as we discovered

blacklists such as Google Safe Browsing were, in some instances,

noticeably lagging (days or even weeks) behind malicious page

accesses. In fact, our system manages to detect malicious pages

before they are included in blacklists, and is thus a good comple-

ment to reactive defenses. Additionally, we collected self-reported

demographic and security-related data from the same users and

evaluated their utility at predicting exposure. We found that models

that solely rely on self-reported data may help forecast exposure

to malicious pages over long time periods, but are also remarkably

less accurate than those including behavioral data.
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A USER SURVEY
Below are the questions that were asked of our 23,419 survey partic-

ipants (beyond demographic questions, and consent). These ques-

tions are English translations of the original Japanese questionnaire.

(1) Have you ever experienced the following attacks or events

while using a mobile device?

(a) Virus infection

(b) Anti-virus alert

(c) Private information theft

(d) Compromised user ID, password, location, or picture

(e) Forced subscription to unwanted paid service

(f) Browser alert

(g) Other issues

Possible answers for each sub-question:
(a) No
(b) I don’t know
(c) Within the past 3 months
(d) Within the past year
(e) Over a year ago

(2) Have you installed an anti-virus on your smartphone?

(a) Yes

(b) No

(c) I don’t know

(3) Which market are you using for app download?

(a) Google Play, Apple Store

(b) au Market (KDDI’s affiliate)

(c) Other website

Possible answers for each sub-question:
(a) Never
(b) Sometimes
(c) Often
(d) Always

(4) How do you respond to a warning page in your browser?

(a) I proceed to the next page without further thinking

(b) I proceed to the next page if the webpage is important to

me

(c) I proceed to the next page if thewebpage is popular/famous

enough

(d) I do not proceed if the browser shows a warning

(e) Other

(f) I have never seen a warning page

The next group of questions (borrowed from RSeBIS, [73]) takes,

as answers, a 5-point Likert scale ranging from “Completely dis-

agree” to “Perfectly agree.”

(1) When someone sends me a link, I open it only after verifying

where it goes.

(2) I know what website I’m visiting by looking at the URL bar,

rather than by the website’s look and feel.

(3) I verify that information will be sent securely (e.g., SSL,

“https://,” a lock icon) before I submit it to websites.

(4) When browsing websites, I mouse-over links to see where

they go, before clicking them.

(5) If I discover a security problem, I fix or report it rather than

assuming somebody else will.

Finally, the last group of questions on self-confidence also takes,

as answers, a 5-point Likert scale ranging from “Completely dis-

agree” to “Perfectly agree.”

(1) I know about countermeasures for keeping the data on my

device from being exploited.

(2) I know about countermeasures to protect myself from mon-

etary loss when using the Internet.

(3) I know about countermeasures to prevent my IDs or Pass-

words being stolen.

(4) I know about countermeasures to prevent my devices from

being compromised.

(5) I know about countermeasures to protect me from being

deceived by fake websites.

(6) I know about countermeasures to prevent my data from

being stolen during web browsing.
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