
A Multi-modal Neural Embeddings Approach for Detecting
Mobile Counterfeit Apps

Jathushan Rajasegaran
Data61, CSIRO

Sydney, Australia
brjathu@gmail.com

Naveen Karunanayake
Data61, CSIRO

Sydney, Australia
naveenharshitha95@gmail.com

Ashanie Gunathillake
The University of Sydney

Sydney, Australia
ashanie87@gmail.com

Suranga Seneviratne
The University of Sydney

Sydney, Australia
suranga.seneviratne@sydney.edu.au

Guillaume Jourjon
Data61, CSIRO

Sydney, Australia
guillaume.jourjon@data61.csiro.au

ABSTRACT
Counterfeit apps impersonate existing popular apps in attempts to
misguide users. Many counterfeits can be identified once installed,
however even a tech-savvy user may struggle to detect them before
installation. In this paper, we propose a novel approach of com-
bining content embeddings and style embeddings generated from
pre-trained convolutional neural networks to detect counterfeit
apps. We present an analysis of approximately 1.2 million apps
from Google Play Store and identify a set of potential counterfeits
for top-10,000 apps. Under conservative assumptions, we were able
to find 2,040 potential counterfeits that contain malware in a set
of 49,608 apps that showed high similarity to one of the top-10,000
popular apps in Google Play Store. We also find 1,565 potential
counterfeits asking for at least five additional dangerous permis-
sions than the original app and 1,407 potential counterfeits having
at least five extra third party advertisement libraries.

CCS CONCEPTS
• Networks→ Mobile and wireless security.

KEYWORDS
Mobile Apps; App Security; Security; Fraud Detection
ACM Reference Format:
Jathushan Rajasegaran, Naveen Karunanayake, Ashanie Gunathillake,
Suranga Seneviratne, and Guillaume Jourjon. 2019. A Multi-modal Neu-
ral Embeddings Approach for Detecting Mobile Counterfeit Apps. In Pro-
ceedings of the 2019 World Wide Web Conference (WWW ’19), May 13–
17, 2019, San Francisco, CA, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3308558.3313427

1 INTRODUCTION
Availability of third party apps is one of the major reasons behind
the wide adoption of smartphones. The two most popular app mar-
kets, Google Play Store and Apple App Store, hosted approximately
3.5 million and 2.1 million apps by early 2018 [16, 24]. Handling

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313427

such large numbers of apps is challenging for app market operators
since there is always a trade-off between how much scrutiny is
put into checking apps and encouraging developers by providing
fast time-to-market. As a result, problematic apps of various kinds
including malware have made it into the app markets [42, 56].

One category of such problematic apps is counterfeits (i.e. apps
that attempt to impersonate popular apps). Reasons behind app
impersonations include harvesting user credentials, increasing ad-
vertising revenue, and spreading malware. Many popular apps such
as Netflix, IFTTT, Angry Birds, and banking apps have been reported
to be affected by counterfeits [8, 25, 39, 50]. In Figure 1, we show
an example counterfeit named Temple Piggy1 which shows a high
visual similarity to the popular arcade game Temple Run.2

a) Original (Temple Run) b) Counterfeit (Temple Piggy)

Figure 1: An example counterfeit for the game Temple Run

In this paper, we propose a neural embedding-based approach to
identify counterfeit apps from a large corpus of apps. We leverage
the recent advances in Convolutional Neural Networks (CNNs) to
generate feature embeddings from given images using pre-trained
models such as VGGNet [45]. In contrast to commonly used content
embeddings generated from fully connected layers before the last
soft-max layer, we show that combining content embeddings with
style embeddings generated from the Gram matrix of convolutional
layer feature maps achieve better results in detecting visually simi-
lar app icons. Following are the main contributions of this paper.
• We show that the novel method of using combined style
and content embeddings generated from pre-trained CNNs
outperforms many baseline image retrieval methods for the
task of detecting visually similar app icons. We also validate
this method using two standard image retrieval datasets.
• Using a large dataset of over 1.2 million app icons, we show
that combined content and style embeddings achieve 8%–12%
higher precision@k and 14%–18% higher recall@k.

1Temple Piggy is currently not available in Google Play Store.
2Temple Run - https://play.google.com/store/apps/details?id=com.imangi.templerun.

3165

https://doi.org/10.1145/3308558.3313427
https://doi.org/10.1145/3308558.3313427

• We show that adding text embeddings [31] as an additional
modality, further increases the performance by 3%–5% and
6%–7% in terms of precision@k and recall@k.
• We identify a set of 7,246 potential counterfeits to the top-
10,000 apps in Google Play and show that 2,040 of them may
contain malware. We further show that out of those; 1,565
ask for at least five extra dangerous permissions and 1,407
have at least five extra third party ad libraries.

2 RELATEDWORK
2.1 Mobile Malware & Greyware
While there is a plethora of work on detecting mobile malware [14,
22, 44, 52, 54] and various fraudulent activities in app markets [15,
21, 43, 47, 53], only a limited amount of work focused on the simi-
larity of mobile apps. Viennot et al. [49] used the Jaccard similarity
of app resources in the likes of images and layout XMLs to identify
clusters of similar apps and then used the developer name and cer-
tificate to differentiate clones from rebranding. Crussell et al. [17]
proposed to use features generated from the source codes to iden-
tify app clones. In contrast to above work, our work focuses on
identifying visually similar apps (i.e. counterfeits) rather than the
exact similarity (i.e. clones), which is a more challenging problem.

Limited amount of work focused on identifying visually similar
mobile apps [7, 35, 36, 46]. For example, Sun et al. [46] proposed
DroidEagle that identifies the visually similar apps based on XML
layouts. While the results are interesting this method has several
limitations. First, all visually similar apps may not be necessarily
similar in XML layouts and it is necessary to consider the simi-
larities in images. Second, app developers are starting to use code
encryption methods, thus accessing codes and layout files may not
always possible. Third, dependency of specific aspects related to
one operating system will not allow to make comparisons between
heterogeneous app markets. Recently, Malisa et al. [35] studied how
likely would users detect a spoofing application using a complete
rendering of the application itself. In contrast to above work, the
proposed work intends to use neural embeddings derived from
app icons and text descriptions that will better capture visual and
functional similarities.

2.2 Visual Similarity & Style Search
Several work focused on transferring style of an image to another.
For example, Gatys et al. [18, 20] proposed a neural style transfer
that is able to transfer the stylistic features of well-known artworks
to target images. Other methods proposed to achieve the same
objective either by updating pixels in the image iteratively or by
optimising a generative model iteratively and producing the styled
image through a single forward pass. A summary of style transfer
algorithms can be found in the survey by Jing et al. [27].

Johnson et al. [28] proposed a feed-forward network architec-
ture capable of real-time style transfer by solving the optimisation
problem formulated by Gatys et al. [20]. Similarly, to style transfer,
CNNs have been successfully used for image searching. In particu-
lar, Bell & Bala [12] proposed a Siamese CNN to learn a high-quality
embedding that represent visual similarity and demonstrated the
utility of these embeddings on several visual search tasks such as
searching similar products. Tan et al. [48] and Matsuo & Yanai [37]

used embeddings created from CNNs to classify artistic styles. In
contrast to these works, our work focuses on retrieving visually
similar Android apps and we highlight the importance of style and
combined (multi-modal) embeddings in this particular problem.

3 DATASET
We collected our dataset by crawling Google Play Store using a
Python crawler between January and March, 2018. The crawler was
seeded with the web pages of the top apps as of January, 2018 and
it recursively discovered apps by following the links in the seeded
pages and the subsequently discovered pages. For each app, we
downloaded the metadata such as app name, app description, and
number of downloads as well as the app icon in .jpg or .png format
(of size 300 x 300 x 3 - height, width, and three RGB channels).

We collected information of 1,278,297 apps during this process.
For each app, we also downloaded the app executable using Google
Play Downloader [1] by simulating a Google Pixel. We were able
to download APKs for 1,023,521 apps out of the total 1,278,297
appswe discovered. The reasons behind this difference are the paid
apps and the apps that did not support the used virtual device.
Labelled set: To evaluate the performance of various image similar-
ity metrics we require a ground truth dataset that contains similar
images to a given image. We used a heuristic approach to shortlist a
possible set of visually similar apps and refined it by manual check-
ing. Our heuristic is based on the fact that there are apps having
multiple legitimate versions. For example, popular game app Angry
Birds has multiple versions such as Angry Birds Rio, Angry Birds
Seasons, and Angry Birds Go with similar app icons and descriptions.

Thus, we first identified the set of developers who has published
more than two apps and one app having at least 500,000 downloads.
In the set of apps from the same developer, the app with the highest
number of downloads was selected as the base app. For each other
app in the set, we calculated the character level cosine similarity of
its app name to the base app name and selected the apps having
over 0.8 similarity and in the same app category as the base app.
We identified 2,689 such groups. Finally, we manually inspected
each group and discarded the apps that were not visually similar.

During our later evaluations, the highest number of neighbours
we retrieve is 20. Therefore, we ensured that the maximum number
of apps in a group was 20 by randomly removing apps from the
groups having more than 20 apps. At the end of this process we
had 806 app groups having a total of 3,539 apps as our labelled set.
Top-10,000 popular apps: To establish a set of potential counter-
feits, we used top-10,000 apps since counterfeits majorly target
popular apps. We selected top-10,000 popular apps by sorting the
apps by the number of downloads, number of reviews, and average
rating similar to what was proposed in [42].
Other image retrieval datasets: To benchmark the performance
of our proposed combined embeddings, we use two existing ground-
truth datasets; UKBench [38] and Holidays [26]. Both datasets con-
tain groups of similar images, containing images of same scenes or
objects from different angles and illumination levels.

4 METHODOLOGY
The main problem we are trying to address is that “given an app can
we find potential counterfeits from a large corpus?”. Since counterfeit

3166

apps focus more on being visually similar to original apps, we
mainly focus on finding similar app icons to a given app icon. We
also focus on the similarity between text as an additional modality.

4.1 App Icon Encoding and Embeddings
We encode the original app icon image of size 300×300×3 to a lower
dimension for efficient search and to avoid false positives happening
due to L2 distance at large dimensions [4]. We create several low
dimensional representations of the images. As baseline methods,
we use state-of-the-art image hashing methods, feature-based image
retrieval methods, and SSIM (Structural Similarity). From a pre-
trained VGGNet, we derive content and style embeddings.

i) Hashing methods: Hashing methods we evaluate include aver-
age [29], difference [30], perceptual [55], and wavelet [5] hashing.
All four methods first scale the app icon to a 32×32 grayscale image
and represent it as a 1x1024 binary feature vector.

ii) Feature-based image retrieval methods: Feature-based meth-
ods extract features from an image and describe them using neigh-
bouring pixels. Thus, such methods have two steps; feature detec-
tion and feature description. Some algorithms perform both tasks
together while others perform them separately. In this paper, we use
four feature matching methods; Scale-Invariant Feature Transform
(SIFT) [34], Speeded-Up Robust Features (SURF) [11], Accelerated
KAZE (AKAZE) [6], and Learned Arrangements of Three Patch Codes
(LATCH) [32]. SIFT and SURF describe an app icon by a fi × 128
integer descriptor matrix, where fi is the number of features de-
tected for app icon i . AKAZE and LATCH describe the app icon by
a fi × 64 binary descriptor matrix.

iii) Structural Similarity Index Matrix (SSIM): SSIM [51] com-
pares the local pattern of pixel intensities in two images and cal-
culate a similarity score. This method gives a high similarity score
even for images with significant pixel-wise difference as it does not
compare images point-by-point basis. SSIM does not represent an
image by a vector/matrix. Therefore, we scale the input app icons
into a 32 × 32 grayscale images and calculate the similarity score.

iv) Content embeddings: To extract the content representation of
an icon, we used a pre-trained VGGNet [45]. We fed all 1.2M app
icons to the VGGNet, and used the content embeddings, C ∈ R4096,
generated at the last fully connected layer of VGGNet (f c_7 layer)
that have shown good results in the past [10, 13].

v) Style embeddings: Content similarity alone is not sufficient
for counterfeit detection as sometimes developers keep the visual
similarity and change the content. Thus, we require an embedding
that represents the style of an image.

Several work demonstrated that the Gram matrix of filter re-
sponses of CNNs can be used to represent the style of an im-
age [19, 20]. We followed a similar approach and used the fifth
convolution layer (conv5_1) of the VGGNet to obtain the style rep-
resentation of the image, as previous work indicated that conv5_1
provides better performance in style similairty [37]. We passed each
icon through the VGGNet, and at conv5_1 the icon was convolved
with pre-trained filters and activated through ReLU function. The
conv5_1 − layer of the VGGNet we used had 512 filters, result-
ing a Gram matrix of sizeG5 ∈ R512×512. We only considered the
upper half of the Gram matrix as our style representation vector,

S ∈ R131,328 as the Gram matrix is symmetric. To further reduce
the dimension of style embeddings we used the very sparse random
projection [33] and ensured the size of style embeddings is 1x4096.
In Figure 2, we show a summary of our icon encoding process.

conv_2	conv_1	 conv_3	
conv_4	 conv_5	

fc_6	 fc_7	

App	Icons	

Content		
embedding		
1	x	4096		

F5	x	(F5)T	

Random	
projection	

Style	embedding		
1	x	4096		

Feature	
Extraction	

SIFT/SURF	descriptor	fi	x	128	
LATCH/AKAZE	descriptor	fi	x	64	

	
Gram	
matrix	

Pre-trained	
VGGNet	

Figure 2: Image embeddings generation process

4.2 Text Embeddings
The app descriptions from Google Play Store can contain a maxi-
mum of 4000 characters, describing the apps’ functionalities and
features. As such, counterfeits are likely to show some similarities
to original apps’ description. To capture this similarity, we first
used standard text pre-processing methods on app descriptions and
trained a Paragraph Vectors Model [31] to create vectors of size
100.

4.3 Retrieving Similar Apps
During the similar app retrieval process we take an app and calcu-
lated the required embeddings and search in the encoded space for
k nearest neighbours using cosine distance, L2 distance, or hamming
distance based on the applicability to the embedding under consid-
eration. Let Xy

i be a vectored representation of an app i using the
encoding scheme y and Xy

t be the corresponding representation of
the target app we are comparing, we calculate the various distance
metrics for different representations as summarised in Table 1.

5 RESULTS
5.1 Evaluation of Embeddings
To quantify the performance of the different embeddings, we evalu-
ate them in four different test scenarios using multiple datasets. In
each scenario, for a given query embedding, we retrieved k-nearest
neighbours (k-NN) based on the distances considered in Table 1. We
tested four values of k ; 5, 10, 15, and 20. The four scenarios are:

i) Holidays dataset: Holidays dataset contains 1,491 images from
500 groups. We took the encoded representation of the first image
to search the entire corpus and retrieved the k-nearest neighbours.
ii) UKBench dataset: UKBench dataset contains 10,200 images
from 2,550 groups. Same method as the Holidays dataset was used.
iii) Apps - Labelled set only: Labelled set contains 3,539 images
from 806 groups. From each group, the base app icon embedding
was taken as the query to retrieve k-NN s among remaining icons.
iv) Apps - Labelled set and all remaining icons and text: This
dataset contains 1.2M images. The embedding of the base app icon
of each group in the labelled set was taken as the query to retrieve
the k-NN s from the entire dataset.

3167

Table 1: Summary of encodingmethods and distancemetrics

Encoding Method Size (n) Distance function
Hashing methods (Hamming distance)
Average 1,024 | |X avд

i ⊕ X avд
t | |1

Difference 1,024 | |Xdif f
i ⊕ Xdif f

t | |1
Perceptual 1,024 | |X perc

i ⊕ X perc
t | |1

Wavelet 1,024 | |Xwave
i ⊕ Xwave

t | |1

Feature based methods (L2 distance)
SIFT f si f ti × 128

∑
xi ∈Xi

min
xt ∈Xt

[| |x si f ti − x si f tt | |2]

SURF f sur fi × 128
∑

xi ∈Xi
min
xt ∈Xt

[| |x sur fi − x sur ft | |2]

Feature based methods (Hamming distance)
AKAZE f akazei × 64

∑
xi ∈Xi

min
xt ∈Xt

[| |xakazei ⊕xakazet | |2]

LATCH f latchi × 64
∑

xi ∈Xi
min
xt ∈Xt

[| |x latchi ⊕ x latcht | |2]

Structural similarity
SSIM Directly returns a dissimilarity
Neural embeddings (Cosine distance)

Content (Ccos) 4,096 1 −
X cont
i .X cont

t
| |X cont

i | |2 | |X cont
t | |2

Style (Scos) 4,096 1 −
X style
i .X style

t

| |X style
i | |2 | |X

style
t | |2

Text (Tcos) 100 1 −
X text
i .X text

t
| |X text

i | |2 | |X text
t | |2

Content+Style 8,192 α Ccos + β Scos
Content+Style+Text 8,292 α Ccos + β Scos + γ Tcos

The intuition behind above scenarios is that if a given embed-
ding is a good representation, the k-NN s we retrieve must be from
the same group as the query. Thus, for each scenario, we present
precision@k and recall@k, where k ∈ {5, 10, 15, 20}, as the per-
formance metrics. Precision@k gives the percentage of relevant
images among the retrieved images. Recall@k is the percentage
of relevant retrieved images out of the all relevant images.

a) Difference hashing b) SSIM

c) Style d) Content + Style + Text

Figure 3: 10-Nearest neighbours of the top-10 popular apps

We present precision@k and recall@k values for all four test
scenarios in Table 2 and Table 3. To choose the best β and γ values
in multi-modals neural embeddings, we varied β and γ from 1 to 10

with an interval of one. We achieved the best results when β = 5
and γ = 4 and we report those results in Tables 2 and 3. The main
takeaway messages from results in these two tables are:

• In all scenarios, neural embeddings outperform other meth-
ods. For example, for all four k-NN scenarios, the style em-
beddings have approximately 4%–14% and 11%–26% higher
performance in precision@k and recall@k in all apps dataset.
• In UKBench and Holidays datasets, content, style, and com-
bined embeddings increase precision@k and recall@k by 10%–
15% and 12%–25%, respectively when retrieving five nearest
neighbours. Combining style embeddings with content em-
beddings achieves 12% higher precision@k and 14% higher
recall@k in all apps dataset compared to hashing and feature-
based baselines when k = 5. Only scenario where combined
content and style embeddings did not outperform all other
methods is the UKBench dataset.
• It is also noticeable that adding text embedding further in-
creases the performance by 3%-5% and 6%-7% in terms of
precision@k and recall@k, respectively, compared to the
best neural embedding method when k ∈ {5, 10}.
• Results also show that increasing the k value increases the
recall@k, however, significantly decreases precision@k. The
main reason is that average number of images per groups in
all four datasets is less than 5 and thus the number of false
positive images in the retrieved image set increases with k.

To elaborate further on the performance of the embeddings
qualitatively, in Figure 3, we present the 10-nearest neighbours we
retrieved using difference hashing, SSIM, style embeddings, and
content+style+text embeddings for the top-10 most popular apps in
Google Play Store. Figure 3-(a) shows that hashing methods do not
identify visually similar apps apart from the first 1-2 similar apps
(E.g. row 9 - Google Maps). Neural embeddings based methods in
Figure 3-(c) and Figure 3-(d) have identified better fits in several
cases (E.g. row 1 - Google Play Services and row 9 - Google Maps).
Also, Figure 3-(c) shows that style embeddings have retrieved app
icons that have the same “look and feel” in terms of colour.

5.2 Retrieving Potential Counterfeits
We next use the embeddings that performed best (Contentcos +
βStylecos + γTextcos where β = 5 and γ = 4) to retrieve 10-nearest
neighbours for top-10,000 apps from the corpus of 1.2 million apps
that are not from the same developer. The 10-nearest neighbour
search is forced to return 10 nearest apps, irrespective of the dis-
tance. As such, there can be cases where the nearest neighbour
search returns apps that are very far from the query app. Thus, we
applied a distance threshold to further narrow down the results.
From the retrieved 10 results for each query app, we discarded
the results that are having distances greater than an empirically
decided threshold. The threshold was chosen as the knee-point [40]
of the cumulative distribution of all the distances with the original
apps. This process returned 60,638 unique apps that are potentially
counterfeits of one or more apps with in top-10,000 popular apps.
Out of this 60,638 we had APK files for 49,608 apps.

3168

Av
er
ag
e

Di
ffe
re
nc
e

Pe
rce
pt
ua
l

W
av
ele
t

SIF
T

SU
RF

LA
TC
H

AK
AZ
E

SS
IM

C c
os

S c
os

C c
os
+
βS

co
s

C c
os
+
βS

co
s

+
γT

co
s

5-NN 24.56 22.68 21.60 24.48 33.00 31.12 29.16 31.00 21.88 46.36 46.72 47.92 N/A
10-NN 13.08 11.74 10.96 12.98 17.58 16.66 15.18 15.90 11.26 25.28 25.24 25.92 N/A
15-NN 9.00 8.08 7.36 8.92 12.15 11.55 10.43 10.91 7.76 17.47 17.25 17.89 N/A

H
ol
id
ay

s

20-NN 6.95 6.19 5.58 6.83 9.34 8.91 7.99 8.31 5.98 13.31 13.13 13.57 N/A

5-NN 27.29 22.44 21.63 26.37 55.27 52.97 44.82 41.77 28.46 70.22 65.01 70.06 N/A
10-NN 15.01 11.70 10.97 14.26 28.99 27.93 23.72 21.98 15.22 36.90 33.86 36.62 N/A
15-NN 10.51 7.95 7.38 9.99 19.82 19.12 16.22 15.04 10.55 25.03 22.95 24.79 N/A

U
K
B
en

ch

20-NN 8.18 6.08 5.59 7.75 15.11 14.60 12.37 11.47 8.17 18.97 17.40 18.75 N/A

5-NN 45.14 48.41 47.62 44.44 48.92 47.67 46.63 44.22 45.34 56.43 60.42 62.23 64.76
10-NN 23.98 28.10 27.42 25.50 26.79 27.05 26.34 25.07 25.59 33.69 35.39 36.04 38.47
15-NN 18.59 19.92 19.45 18.08 18.86 19.00 18.45 17.54 18.06 24.05 25.25 25.57 27.19

La
be

ll
ed

20-NN 14.52 15.56 15.24 14.16 14.57 14.69 14.24 13.5 14.09 18.69 19.66 19.86 21.09

5-NN 34.89 38.01 37.07 34.17 38.23 39.13 37.32 36.87 37.39 45.51 50.72 50.91 55.96
10-NN 19.43 21.53 20.79 19.08 21.82 22.10 21.09 20.81 20.73 26.08 29.57 29.81 32.99

A
ll

15-NN 13.69 15.30 14.74 13.32 15.31 15.52 14.82 14.63 14.47 18.30 20.90 21.12 23.46
20-NN 10.63 11.89 11.40 10.36 11.87 11.97 11.46 11.33 11.15 14.07 16.14 16.31 18.23

Table 2: precision@k for all test scenarios (NN* - Nearest Neighbours)

Av
er
ag
e

Di
ffe
re
nc
e

Pe
rce
pt
ua
l

W
av
ele
t

SIF
T

SU
RF

LA
TC
H

AK
AZ
E

SS
IM

C c
os

S c
os

C c
os
+
βS

co
s

C c
os
+
βS

co
s

+
γT

co
s

5-NN 41.18 38.03 36.22 41.05 55.33 52.18 48.89 51.98 36.69 77.73 78.34 80.35 N/A
10-NN 43.86 39.37 36.75 43.53 58.95 55.87 50.91 53.32 37.76 84.78 84.64 86.92 N/A
15-NN 45.27 40.64 37.02 44.87 61.10 58.08 52.45 54.86 39.03 87.86 86.79 90.01 N/A

H
ol
id
ay

s

20-NN 46.61 41.52 37.42 45.81 62.64 59.76 53.59 55.73 40.11 89.27 88.06 91.01 N/A

5-NN 34.11 28.05 27.04 32.96 69.09 66.22 56.03 52.23 35.58 87.78 81.27 87.58 N/A
10-NN 37.51 29.25 27.42 35.66 72.47 69.84 59.3 54.96 38.03 92.25 84.65 91.54 N/A
15-NN 39.41 29.82 27.69 37.46 74.34 71.69 60.83 56.4 39.56 93.85 86.08 92.96 N/A

U
K
B
en

ch

20-NN 40.92 30.82 27.93 38.73 75.57 72.99 61.83 57.34 40.86 94.83 86.98 93.75 N/A

5-NN 51.40 55.35 54.22 50.61 55.43 54.28 53.09 50.35 51.60 64.26 68.80 69.82 73.75
10-NN 59.17 64.08 62.44 58.07 61.00 61.60 59.99 57.11 58.24 76.72 80.59 82.09 87.62
15-NN 63.49 68.04 66.46 61.77 64.42 64.91 63.04 59.93 61.66 82.17 86.27 87.34 92.88

La
be

ll
ed

20-NN 66.12 70.90 69.40 64.48 66.37 66.91 64.88 61.51 64.12 85.14 89.55 90.45 96.07

5-NN 39.73 42.29 42.22 38.91 43.29 44.30 42.47 41.96 42.55 51.82 57.76 57.98 63.72
10-NN 44.25 49.03 47.36 43.46 49.42 50.04 48.01 47.36 47.19 59.40 67.34 67.90 75.13

A
ll

15-NN 46.76 52.27 50.35 45.49 52.02 52.73 50.61 49.93 49.39 62.53 71.40 72.14 80.16
20-NN 48.43 54.14 51.94 47.19 53.75 54.23 52.16 51.57 50.75 64.09 73.52 74.29 83.05

Table 3: recall@k for all test scenarios (NN* - Nearest Neighbours)

5.3 Malware Analysis
We then checked each of the 49,608 potential counterfeits using
the private API of the online malware analysis tool VirusTotal [2].
VirusTotal scans the APKs with over 60 commercial anti-virus
tools (AV-tools) and provides a report on how many of those tools
identifiedwhether the submitted APKs containmalware. In Figure 4,
we show a summary of the number of apps that were tagged as
possible malware by one or more AV-tools in VirusTotal and their
availability in Google Play Store as of 24-10-2018. There were 7,246
APKs that are tagged by at least one of the AV-tool.

However, a single AV-tool tagging an APK as malware may not
mean that the APK contains malware. Thus, previous work used
different thresholds for the number of AV-tools that must report to
consider an APK as malware. Ikram et al. [23] used a conservative
threshold of 5 and Arp et al. [9] used a relaxed threshold of 2.
Figure 4 shows that we have 3,907 apps if the AV-tool threshold is
2 and 2,040 apps if the threshold is 5, out of which 2,067 and 1,080
apps respectively, are still there in Google Play Store. ∼46% of the
apps (3,358) that were tagged by at least one AV-tool are currently

not available in Google Play Store. One possible reason is that these
apps were removed by Google after binary analysis. In Table 4, we
show some example apps that were tagged as containing malware.

Figure 4: No. of apps against the no. of reporting AV-tools

3169

Table 4: Example similar apps that contain malware

Original
app

Similar
app

AV-tools Downloads
(Original)

Downloads
(Similar)

Clean Master Ram Booster* 12
500 million
- 1 billion

500
- 1,000

Temple Run Endless Run* 12
100 million
- 500 million

5,000
- 10,000

Temple Run 2 Temple Theft Run* 12
500 million
- 1 billion

500, 000
- 1 million

Hill Climb
Racing

Offroad Racing:
Mountain Climb

9
100 million
- 500 million

1 million
- 5 million

Parallel Space Double Account* 17
50 million
- 100 million

100, 000
- 500, 000

*The app is currently not available in Google Play Store

5.4 Permission Requests
Another motivation behind counterfeiting can be collecting per-
sonal data.We considered the 26 dangerous Android permissions [3]
and to identify the potential counterfeits that ask for more per-
missions than the original app, we define a metric, permissions
difference, which is the difference between the number of danger-
ous permissions requested by the potential counterfeit but not the
original app and number of dangerous permissions requested by
the original app but not by the potential counterfeit app. If the per-
missions difference is a positive value that means the counterfeit
asks for more dangerous permissions than the original app and vice
versa if it is negative. For the 49,608 potential counterfeits we had
the APK files, we calculated the permission difference.

The cumulative sum of number of apps against the permission
difference is shown in Figure 5a. The majority of the potential coun-
terfeits did not ask formore dangerous permissions than the original
app. However, there are 17,230 potential counterfeits that are asking
at least one dangerous permission than the original app (13,857
unique apps), and 1,866 potential counterfeits (1,565 unique apps)
asking at least five additional dangerous permissions. In Figure 5b
we show Google Play Store availability of the 17,230 apps with
positive permissions difference as of 24-10-2018. Figure shows
approximately 37% of the potential counterfeits with a permission
difference of five is currently not available in the Google Play Store.

5.5 Advertisement Libraries
Another motivation behind developing counterfeits can be mon-
etisation using advertisements. To quantify this, we defined; ad
library difference using the list of 124 mobile advertising and
analytics libraries provided in [41]. Ad library difference is the
difference between the number of advertisement libraries embed-
ded in the potential counterfeit but not in the original app and

(a) Cumulative number of apps
against permission difference

(b) Play Store availability of apps with
positive permission difference

Figure 5: Counterfeits requesting extra permissions

(a) Cumulative number of apps
against ad library difference

(b) Play Store availability of apps
with positive ad library difference

Figure 6: Counterfeits with additional ad libraries

number of advertisement libraries embedded in the original app
but not in the potential counterfeit app. We show the cumulative
number of counterfeits over the range of ad library difference in
Figure 6a. According to the figure, 13,997 apps (11,281 unique apps)
have a positive ad library difference and out of that 1,841 (1,407
unique apps) have an ad library difference greater than or equal to
five. Figure 6b shows the Google Play store availability of apps with
a positive ad library difference. Approximately 33% of the apps we
identified are currently not available in the Google Play Store.

6 CONCLUSION
We proposed an icon encoding method that allows to efficiently
search potential counterfeits to a given app, using neural embed-
dings generated by CNNs. Specifically, for app counterfeit detec-
tion problem, we showed that content and style neural embeddings
generated from a pre-trained VGGNet significantly outperforms
hashing and feature-based image retrieval methods.

We used our multi-modal embedding method to retrieve po-
tential counterfeits for the top-10,000 apps in Google Play and
investigated the possible inclusion of malware, permission usage,
and embedded third party ad libraries. We found that 2,040 potential
counterfeits we retrieved were marked by at least five commercial
antivirus tools as malware, 1,565 asked for at least five additional
dangerous permissions, and 1,407 had at least five additional embed-
ded third party ad libraries. Finally, we showed that as of now (6-10
months since we discovered the apps), 27%–46% of the potential
counterfeits we identified are not available in Google Play Store,
potentially removed due to customer complaints.

ACKNOWLEDGEMENT
This project is partially funded by the Google Faculty Rewards
2017, NSW Cyber Security Network’s Pilot Grant Program 2018,
and the Next Generation Technologies Program. Authors would

3170

like to thank VirusTotal for kindly providing access to the private
API, which was used for the malware analysis in this paper.

REFERENCES
[1] 2018. https://github.com/matlink/gplaycl.
[2] 2018. https://www.virustotal.com.
[3] 2018. https://developer.android.com/guide/topics/permissions.
[4] Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. 2001. On the

surprising behavior of distance metrics in high dimensional spaces. In ICDT.
Springer.

[5] Fawad Ahmed andM. Y. Siyal. 2006. A Secure and RobustWavelet-Based Hashing
Scheme for Image Authentication. In Advances in Multimedia Modeling. 51–62.

[6] Pablo Fernández Alcantarilla, Jesús Nuevo, and Adrien Bartoli. 2013. Fast Explicit
Diffusion for Accelerated Features in Nonlinear Scale Spaces. In BMVC. 1–9.

[7] Benjamin Andow, Adwait Nadkarni, Blake Bassett, William Enck, and Tao Xie.
2016. A study of grayware on Google Play. In Security and Privacy Workshops
(SPW), 2016 IEEE. IEEE.

[8] Ionut Arghire. 2017. Fake Netflix App Takes Control of Android Devices.
http://www.securityweek.com/fake-netflix-app-takes-control-android-devices.

[9] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck,
and CERT Siemens. 2014. DREBIN: Effective and Explainable Detection of An-
droid Malware in Your Pocket.. In NDSS.

[10] Artem Babenko, Anton Slesarev, Alexander Chigorin, and Victor S. Lempit-
sky. 2014. Neural Codes for Image Retrieval. CoRR abs/1404.1777 (2014).
arXiv:1404.1777

[11] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. 2006. SURF: Speeded Up
Robust Features. In Computer Vision-ECCV. Springer Berlin Heidelberg, 404–417.

[12] Sean Bell and Kavita Bala. 2015. Learning visual similarity for product design
with convolutional neural networks. ACM Transactions on Graphics (TOG) (2015).

[13] Sean Bell and Kavita Bala. 2015. Learning visual similarity for product design
with convolutional neural networks. ACM Transactions on Graphics (TOG) (2015).

[14] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. 2011. Crowdroid:
Behavior-based malware detection system for android. In Proc. of the 1st ACM
workshop on Security and privacy in smartphones and mobile devices. ACM, 15–26.

[15] Rishi Chandy and Haijie Gu. 2012. Identifying spam in the iOS app store. In Proc.
of the 2nd Joint WICOW/AIRWeb Workshop on Web Quality. ACM, 56–59.

[16] Sam Costello. 2018. How Many Apps Are in the App Store?
https://www.lifewire.com/how-many-apps-in-app-store-2000252. Accessed:
2018-04-12.

[17] Jonathan Crussell, Clint Gibler, andHao Chen. 2013. Andarwin: Scalable detection
of semantically similar Android applications. In European Symposium on Research
in Computer Security. Springer, 182–199.

[18] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. 2015. A neural algorithm
of artistic style. arXiv preprint arXiv:1508.06576 (2015).

[19] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. 2015. Texture synthesis
and the controlled generation of natural stimuli using convolutional neural
networks. CoRR abs/1505.07376 (2015). arXiv:1505.07376

[20] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. 2016. Image style transfer
using Convolutional Neural Networks. In Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition.

[21] Clint Gibler, Ryan Stevens, Jonathan Crussell, Hao Chen, Hui Zang, and Heesook
Choi. 2013. Adrob: Examining the landscape and impact of Android application
plagiarism. In Proc. of the 11th MobiSys. ACM.

[22] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian Jiang. 2012.
Riskranker: Scalable and accurate zero-day Android malware detection. In Proc.
of the 10th international conference on Mobile systems, applications, and services.
ACM, 281–294.

[23] Muhammad Ikram, Narseo Vallina-Rodriguez, Suranga Seneviratne,MohamedAli
Kaafar, and Vern Paxson. 2016. An Analysis of the Privacy and Security Risks
of Android VPN Permission-enabled Apps. In Proc. of the 2016 ACM on Internet
Measurement Conference.

[24] Statista Inc. 2018. Number of available applications in the
Google Play Store from December 2009 to December 2017.
https://www.statista.com/statistics/266210/number-of-available-applications-
in-the-google-play-store/.

[25] Chris Jager. 2018. Scam Alert: Fake CBA And ANZ Bank Apps Discovered On
Google Play Store. https://www.lifehacker.com.au/2018/09/scam-alert-fake-cba-
and-anz-banking-apps-found-on-google-play-store/. Accessed: 2018-10-15.

[26] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2008. Hamming embed-
ding and weak geometric consistency for large scale image search. In European
conference on computer vision. Springer, 304–317.

[27] Yongcheng Jing, Yezhou Yang, Zunlei Feng, Jingwen Ye, and Mingli Song. 2017.
Neural Style Transfer: A Review. arXiv preprint arXiv:1705.04058 (2017).

[28] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016. Perceptual losses for
real-time style transfer and super-resolution. In ECCV. Springer, 694–711.

[29] Neal Krawetz. 2013. http://www.hackerfactor.com/blog/?/archives/432-Looks-
Like-It.html.

[30] Neal Krawetz. 2013. http://www.hackerfactor.com/blog/?/archives/529-Kind-of-
Like-That.html.

[31] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and
documents. In Proc. of the 31st ICML. 1188–1196.

[32] G. Levi and T. Hassner. 2016. LATCH: Learned arrangements of three patch
codes. In IEEE Winter Conference on Applications of Computer Vision. 1–9.

[33] Ping Li, Trevor J Hastie, and Kenneth W Church. 2006. Very sparse random
projections. In Proc. of the 12th ACM SIGKDD. ACM, 287–296.

[34] David G Lowe. 2004. Distinctive image features from scale-invariant keypoints.
International journal of computer vision 60, 2 (2004).

[35] Luka Malisa, Kari Kostiainen, and Srdjan Capkun. 2017. Detecting Mobile
Application Spoofing Attacks by Leveraging User Visual Similarity Percep-
tion. In Proc. of the Seventh ACM on Conference on Data and Application
Security and Privacy (CODASPY ’17). ACM, New York, NY, USA, 289–300.
https://doi.org/10.1145/3029806.3029819

[36] Luka Malisa, Kari Kostiainen, Michael Och, and Srdjan Capkun. 2016. Mobile
application impersonation detection using dynamic user interface extraction. In
European Symposium on Research in Computer Security. Springer, 217–237.

[37] Shin Matsuo and Keiji Yanai. 2016. CNN-based style vector for style image
retrieval. In Proc. of the 2016 ACM ICMR. ACM, 309–312.

[38] David Nister and Henrik Stewenius. 2006. Scalable Recognition with a Vocabu-
lary Tree. In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition.

[39] Sarah Perez. 2013. Developer Spams Google Play With Ripoffs Of Well-Known
Apps Again. http://techcrunch.com.

[40] Ville Satopaa, Jeannie Albrecht, David Irwin, and Barath Raghavan. 2011. Finding
a" kneedle" in a haystack: Detecting knee points in system behavior. InDistributed
Computing Systems Workshops (ICDCSW), 2011 31st International Conference on.
IEEE.

[41] Suranga Seneviratne, Harini Kolamunna, and Aruna Seneviratne. 2015. A mea-
surement study of tracking in paid mobile applications. In Proc. of the 8th ACM
Conference on Security & Privacy in Wireless and Mobile Networks. ACM, 7.

[42] Suranga Seneviratne, Aruna Seneviratne, Mohamed Ali Kaafar, Anirban Mahanti,
and Prasant Mohapatra. 2015. Early detection of spam mobile apps. In Proc. of
the 24th International Conference on World Wide Web.

[43] Suranga Seneviratne, Aruna Seneviratne, Mohamed Ali Kaafar, Anirban Mahanti,
and Prasant Mohapatra. 2017. Spam Mobile Apps: Characteristics, Detection, and
in the Wild Analysis. In To Appear in Proc. of Transactions on the Web (TWEB).
ACM.

[44] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael Weiss. 2012.
Andromaly: A behavioral malware detection framework for android devices.
Journal of Intelligent Information Systems 38, 1 (2012), 161–190.

[45] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional
Networks for Large-Scale Image Recognition. CoRR abs/1409.1556 (2014).
arXiv:1409.1556

[46] Mingshen Sun, Mengmeng Li, and John Lui. 2015. DroidEagle: Seamless detection
of visually similar Android apps. In Proc. of the 8th ACM Conference on Security
& Privacy in Wireless and Mobile Networks. ACM.

[47] Didi Surian, Suranga Seneviratne, Aruna Seneviratne, and Sanjay Chawla. 2017.
App Miscategorization Detection: A Case Study on Google Play. IEEE TKDE 29,
8 (2017).

[48] Wei Ren Tan, Chee Seng Chan, Hernán E Aguirre, and Kiyoshi Tanaka. 2016.
Ceci n’est pas une pipe: A deep convolutional network for fine-art paintings
classification. In Image Processing (ICIP), 2016 IEEE International Conference on.
IEEE.

[49] Nicolas Viennot, Edward Garcia, and Jason Nieh. 2014. A measurement study of
Google Play. In ACM SIGMETRICS Performance Evaluation Review. ACM.

[50] Kyle Wagner. 2012. Fake Angry Birds Space Android App Is Full Of
Malware. https://www.gizmodo.com.au/2012/04/psa-fake-angry-birds-space-
android-app-is-full-of-malware/.

[51] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004. Image quality
assessment: from error visibility to structural similarity. IEEE Transactions on
Image Processing 13, 4 (2004), 600–612.

[52] Dong-Jie Wu, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and Kuo-Ping Wu.
2012. Droidmat: Android malware detection through manifest and api calls
tracing. In Information Security (Asia JCIS), 2012 Seventh Asia Joint Conference on.
IEEE, 62–69.

[53] Zhen Xie and Sencun Zhu. 2015. AppWatcher: Unveiling the underground market
of trading mobile app reviews. In Proc. of the 8th ACM Conference on Security &
Privacy in Wireless and Mobile Networks. ACM.

[54] Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and Yibo Xue. 2014. Droid-
Sec: Deep learning in Android malware detection. In ACM SIGCOMM Computer
Communication Review.

[55] H. Zhang, M. Schmucker, and X. Niu. 2007. The Design and Application of
PHABS: A Novel Benchmark Platform for Perceptual Hashing Algorithms. In
IEEE International Conference on Multimedia and Expo. 887–890.

[56] Yajin Zhou andXuxian Jiang. 2012. DissectingAndroidmalware: Characterization
and evolution. In Security and Privacy (SP), 2012 IEEE Symposium on. IEEE.

3171

http://arxiv.org/abs/1404.1777
http://arxiv.org/abs/1505.07376
http://arxiv.org/abs/1409.1556

	Abstract
	1 Introduction
	2 Related Work
	2.1 Mobile Malware & Greyware
	2.2 Visual Similarity & Style Search

	3 Dataset
	4 Methodology
	4.1 App Icon Encoding and Embeddings
	4.2 Text Embeddings
	4.3 Retrieving Similar Apps

	5 Results
	5.1 Evaluation of Embeddings
	5.2 Retrieving Potential Counterfeits
	5.3 Malware Analysis
	5.4 Permission Requests
	5.5 Advertisement Libraries

	6 Conclusion
	References

